
GCC Internals
Alias analysis

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

27 November 2007 GCC Internals – Alias analysis - 2

Overview

GIMPLE represents alias information explicitly

Alias analysis is just another pass

– Artificial symbols represent memory expressions (virtual
operands)

– FUD-chains computed on virtual operands → Virtual SSA

Transformations may prove a symbol non-
addressable

– Promoted to GIMPLE register

– Requires another aliasing pass

27 November 2007 GCC Internals – Alias analysis - 3

Memory expressions in GIMPLE

At most one memory load and one memory store
per statement

– Loads only allowed on RHS of assignments

– Stores only allowed on LHS of assignments

Gimplifier will enforce this property

Dataflow on memory represented explictly

– Factored Use-Def (FUD) chains or “Virtual SSA”

– Requires a symbolic representation of memory

27 November 2007 GCC Internals – Alias analysis - 4

Symbolic Representation of Memory

Aliased memory referenced via pointers

GIMPLE only allows single-level pointers

 Invalid Valid

 **p t.1 = *p

 *t.1

 *(a[3].ptr) t.1 = a[3].ptr

 *t.1

27 November 2007 GCC Internals – Alias analysis - 5

Symbolic Representation of Memory

Pointer P is associated with memory tag MT

– MT represents the set of variables pointed-to by P

So *P is a reference to MT

if (...)
 p = &a
else
 p = &b
*p = 5

 p points-to {a, b}
 p has memory tag MT

 Interpreted as MT = 5

27 November 2007 GCC Internals – Alias analysis - 6

Associating Memory with Symbols

Alias analysis

– Builds points-to sets and memory tags

Structural analysis

– Builds field tags (sub-variables)

Operand scanner

– Scans memory expressions to extract tags

– Prunes alias sets based on expression structure

27 November 2007 GCC Internals – Alias analysis - 7

Alias Analysis

GIMPLE only has single level pointers.
Pointer dereferences represented by artificial
symbols ⇒ memory tags (MT).

If p points-to x ⇒ p's tag is aliased with x.

MT = VDEF <MT>

*p = ...

Since MT is aliased with x:
x = VDEF <x>

*p = ...

27 November 2007 GCC Internals – Alias analysis - 8

Alias Analysis

Symbol Memory Tags (SMT)
– Used in type-based and flow-insensitive points-to analyses

– Tags are associated with symbols

Name Memory Tags (NMT)
– Used in flow-sensitive points-to analysis

– Tags are associated with SSA names

Compiler tries to use name tags first

27 November 2007 GCC Internals – Alias analysis - 9

Alias analysis in RTL

Pure query system

Pairwise disambiguation of memory references

– Does store to A affect load from B?

– Mostly type-based (same predicates used in GIMPLE's
TBAA)

Very little information passed on from GIMPLE

27 November 2007 GCC Internals – Alias analysis - 10

Alias analysis in RTL

Some symbolic information preserved in RTL
memory expressions

– Base + offset associated to aggregate refs

– Memory symbols

Tracking of memory addresses by propagating
values through registers

Each pass is responsible for querying the alias
system with pairs of addresses

27 November 2007 GCC Internals – Alias analysis - 11

Alias analysis in RTL – Problems

Big impedance between GIMPLE and RTL

– No/little information transfer

– Producers and consumers use different models

– GIMPLE → explicit representation in IL

– RTL → query-based disambiguation

Work underway to resolve this mismatch

– Results of alias analysis exported from GIMPLE

– Adapt explicit representation to query system

27 November 2007 GCC Internals – Alias analysis - 12

Alias Analysis

Points-to alias analysis (PTAA)

– Constraint language describes variables, operations and
rules to derive points-to facts

– Solving the system, gives sets of pointed-to symbols

– Field and flow sensitive, context insensitive

– Fairly precise

Type-based analysis (TBAA)

– Based on input language rules

– Field sensitive, flow insensitive

– Very imprecise

27 November 2007 GCC Internals – Alias analysis - 13

Alias Analysis

Two kinds of pointers are considered

– Symbols: Points-to is flow-insensitive

• Associated to Symbol Memory Tags (SMT)

– SSA names: Points-to is flow-sensitive

• Associated to Name Memory Tags (NMT)

Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr

27 November 2007 GCC Internals – Alias analysis - 14

Structural Analysis

Separate structure fields are assigned distinct
symbols

struct A
{
 int x;
 int y;
 int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are
mapped to the corresponding sub-
variable

27 November 2007 GCC Internals – Alias analysis - 15

IL Representation

foo (i, a, b, *p)
{
 p =(i > 10) ? &a : &b
 *p = 3
 return a + b
}

foo (i, a, b, *p)
{
 p = (i > 10) ? &a : &b

 # a = VDEF <a>
 # b = VDEF
 *p = 3

 # VUSE <a>
 t1 = a

 # VUSE
 t2 = b

 t3 = t1 + t2
 return t3
}

27 November 2007 GCC Internals – Alias analysis - 16

Virtual SSA – Problems

•Big alias sets → Many virtual operators
• Unnecessarily detailed tracking

• Memory

• Compile time

• SSA name explosion

•Static alias grouping helps
• Reverse role of alias tags and alias sets

• Approach convoluted and too broad

27 November 2007 GCC Internals – Alias analysis - 17

Memory SSA

•Attempts to reduce the number of virtual operators in
the presence of big alias sets

•Main idea
• Alias sets are reduced by partitioning

• Partitions affect representation not points-to results

NMT.1 aliases { a b c x z l }

NMT.1 aliases { a MPT.1 l }

6 VOPS per
store/load

3 VOPS per store/load

27 November 2007 GCC Internals – Alias analysis - 18

Partitioning schemes

•Dynamic
• Every store generates a different partition

• Stores generate a single SSA name N

• N becomes currdef for all the affected symbols

• Loads are handled as usual

•Static
• Partitions are determined before SSA renaming

• Associations stay fixed

27 November 2007 GCC Internals – Alias analysis - 19

Dynamic partitioning

.MEM_10 = VDEF <.MEM_0>
*p_3 = ...

.MEM_11 = VDEF <.MEM_0>
*q_4 = ...

b_12 = VDEF <.MEM_10>
b = ...

.MEM_13 = VDEF <.MEM_10, b_12>
*p_3 = ...

VUSE <.MEM_13>
t_14 = b

VUSE <.MEM_11>
t_15 = o

p_3 points-to { a, b, c }

q_4 points-to { n, o, x }

At most one VDEF and one
VUSE per statement

Virtual operators may refer to
more than one operand

Factored stores create
“sinks” that group multiple
incoming names

27 November 2007 GCC Internals – Alias analysis - 20

Dynamic partitioning

Advantages
• Stores generate exactly one SSA name

• Loads not reached by unrelated SSA names (no false
conflicts)

Disadvantages
• Creates overlapping live ranges (OLR)

• SSA renaming more complex

• PHI nodes are a problem

27 November 2007 GCC Internals – Alias analysis - 21

Dynamic partitioning

if (...)

MEM_10 = VDEF <...>

*p_3 = ... → STORES { a b c d }

else

a_2 = VDEF <...>

a = ...

MEM_11 = VDEF <...>

*q_5 = ... → STORES { a d }

endif

MEM_13 = PHI <MEM_10, {a_2, MEM_11}> STORES { a b c d }

● Insert one PHI node per symbol
● Defeats the factoring
● Generates even more VOPS

● Create PHI nodes for MEM
● Creates PHI arguments with multiple

reaching definitions
● Leads to splitting and fixup problems

27 November 2007 GCC Internals – Alias analysis - 22

Static partitioning

Partitions are symbols, not SSA names

Association is done before SSA renaming

Advantages
SSA renaming not affected

No OLR for virtual SSA names

Disadvantages
False conflicts due to partitioning

27 November 2007 GCC Internals – Alias analysis - 23

Static vs Dynamic partitioning

MEM_3 = VDEF <...>

*p_9 = ...

a_5 = VDEF <MEM_3>

a = ...

b_6 = VDEF <MEM_3>

b = ...

VUSE <a_5>

... = a

MPT_3 = VDEF <...>

*p_9 = ...

MPT_5 = VDEF <MPT_3>

a = ...

MPT_6 = VDEF <MPT_5>

b = ...

VUSE <MPT_6>

... = a

Dynamic partitioning
Stores to a and b do not conflict

Static partition MPT { a b }
Stores to a and b do conflict

p_9 points to { a b }

27 November 2007 GCC Internals – Alias analysis - 24

Heuristic for static partitioning

Goal: minimize false conflicts introduced by partitions
• Partition as few symbols as possible

• Only partition uninteresting symbols

Partitioning algorithm

1. Gather statistics on loads and stores (direct loads/
stores, indirect load/stores, execution frequency, etc)

2. Sort list by increasing score (try not to partition symbols
with high scores)

3. Partition until number of loads/stores below threshold

27 November 2007 GCC Internals – Alias analysis - 25

Hybrid partitioning

Work in progress

Use static partitioning to avoid the problems with PHI
nodes from dynamic partitions

PHI arguments with multiple reaching defs

if (...)
 # x_4 = VDEF < ... >
 x = ...
 # y_5 = VDEF <...>
 y = ...
else
 # x_7 = VDEF <...>
 x = ...
endif
MPT_10 = PHI <{x_4, y_5}, x_7>

New “sink” operator needed
to create a new name

