
GCC Internals

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

November 27, 2007 GCC Internals - 2

Outline

1. Overview
Features, history, development model

2. Source code organization
Files, building, patch submission

3. Internal architecture
Pipeline, representations, data structures, alias
analysis, data flow, code generation

4. Passes
Adding, debugging

Internal information valid for GCC mainline as of 2007-11-20

November 27, 2007 GCC Internals - 3

➢ Major features

➢ Brief history

➢ Development model

1. Overview

November 27, 2007 GCC Internals - 4

Major Features

Availability

– Free software (GPL)

– Open and distributed development process

– System compiler for popular UNIX variants

– Large number of platforms (deeply embedded to
big iron)

– Supports all major languages: C, C++, Java,
Fortran 95, Ada, Objective-C, Objective-C++, etc

November 27, 2007 GCC Internals - 5

Major Features

Code quality

– Bootstraps on native platforms

– Warning-free

– Extensive regression testsuite

– Widely deployed in industrial and research projects

– Merit-based maintainership appointed by steering committee

– Peer review by maintainers

– Strict coding standards and patch reversion policy

November 27, 2007 GCC Internals - 6

Major Features

Analysis/Optimization

– SSA-based high-level global optimizer

– Constraint-based points-to alias analysis

– Data dependency analysis based on chains of recurrences

– Feedback directed optimization

– Inter-procedural optimization

– Automatic pointer checking instrumentation

– Automatic loop vectorization

– OpenMP support

November 27, 2007 GCC Internals - 7

Overview
➢ Major features

➢ Brief history

➢ Development model

November 27, 2007 GCC Internals - 8

Brief History

GCC 1 (1987)

– Inspired on Pastel compiler (Lawrence Livermore Labs)

– Only C

– Translation done one statement at a time

GCC 2 (1992)

– Added C++

– Added RISC architecture support

– Closed development model challenged

– New features difficult to add

November 27, 2007 GCC Internals - 9

Brief History

EGCS (1997)

– Fork from GCC 2.x

– Many new features: Java, Chill, numerous embedded ports,
new scheduler, new optimizations, integrated
libstdc++

GCC 2.95 (1999)

– EGCS and GCC2 merge into GCC

– Type based alias analysis

– Chill front end

– ISO C99 support

November 27, 2007 GCC Internals - 10

Brief History

GCC 3 (2001)

– Integrated libjava

– Experimental SSA form on RTL

– Functions as trees

GCC 4 (2005)

– Internal architecture overhaul (Tree SSA)

– Fortran 95

– Automatic vectorization

November 27, 2007 GCC Internals - 11

GCC Growth1

1.21
1988

1.38
1990

 2.0
1992

2.8.1
1998

EGCS
1998

2.95
1999

 3.0
2001

 3.1
2002

 4.0
2005

 4.1
2006

 4.2
2007

 4.3
2008

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

2,400,000

2,600,000

2,800,000

3,000,000

Total

Runtime

Front Ends

Compiler

Ports

Releases

LO
C

libstdc++
Java

libjava

Ada

C++

Tree SSA
Fortran 95

Objective C++

1 generated using David A. Wheeler's 'SLOCCount'.

Objective C++
OpenMP Eclipse parser

November 27, 2007 GCC Internals - 12

1. Overview
➢ Major features

➢ Brief history

➢ Development model

November 27, 2007 GCC Internals - 13

Development Model

Project organization

– Steering Committee → Administrative, political

– Release Manager → Release coordination

– Maintainers → Design, implementation

Three main stages (~2 months each)

– Stage 1 → Big disruptive changes.

– Stage 2 → Stabilization, minor features.

– Stage 3 → Bug fixes only (bugzilla).

November 27, 2007 GCC Internals - 14

Development Model

Major development is done in branches

– Design/implementation discussion on public lists

– Frequent merges from mainline

– Final contribution into mainline only at stage 1 and approved
by maintainers

Anyone with SVN write-access may create a
development branch

Vendors create own branches from FSF release
branches

November 27, 2007 GCC Internals - 15

Development Model

All contributors must sign FSF copyright release

– Even when working on branches

Three levels of access

– Snapshots (weekly)

– Anonymous SVN

– Read/write SVN

Two main discussion lists

– gcc@gcc.gnu.org

– gcc-patches@gcc.gnu.org

mailto:gcc@gcc.gnu.org
mailto:gcc-patches@gcc.gnu.org

November 27, 2007 GCC Internals - 16

2. Source code
➢ Source tree organization

➢ Configure, build, test

➢ Patch submission

November 27, 2007 GCC Internals - 17

Source code

Getting the code for mainline (or trunk)

$ svn co svn://gcc.gnu.org/svn/gcc/trunk

Build requirements (http://gcc.gnu.org/install)

– ISO C90 compiler

– GMP library

– MPFR library

– GNAT (only if building Ada)

Source code includes runtimes for all languages and
extensive regression testsuite.

Multiple precision floating point libraries

http://gcc.gnu.org/install

November 27, 2007 GCC Internals - 18

Source code

<src>

 gcc Front/middle/back ends

 libada Ada runtime
 libcpp Pre-processor

 libdecnumber Decimal arithmetic library

 libgfortran Fortran runtime

 libgomp OpenMP runtime
 libiberty Utility functions and generic data structures

 libmudflap Pointer/memory check runtime

 libobjc Objective-C runtime

 libssp Stack Smash Protection runtime

 libstdc++-v3 C++ runtime

 boehm-gc
 libffi Java runtime
 libjava
 zlib

 libgcc Internal library for missing target features

November 27, 2007 GCC Internals - 19

Source code

<src>

Core compiler and C front end

 cp C++ front end

 ginclude System headers (mainly freestanding support)

 ada Ada front end

 config Architecture-specific codegen (ports)

 fortran Fortran front end

 objcp Objective C++ front end

 testsuite Regression tests

 po Portable object files for I18N

 objc Objective C front end

 java Java front end

 doc User manual and internal documentation

 treelang Toy language front end

 gcc

November 27, 2007 GCC Internals - 20

Core compiler files (<src>/gcc)

Alias analysis

Build support

C front end

CFG and callgraph

Code generation

Diagnostics

Driver

Profiling

Internal data structures

Mudflap

OpenMP

Option handling

RTL optimizations

Tree SSA optimizations

November 27, 2007 GCC Internals - 21

2. Source code

➢ Source tree organization

➢ Configure, build, test

➢ Patch submission

November 27, 2007 GCC Internals - 22

Configuring and Building

$ svn co svn://gcc.gnu.org/svn/gcc/trunk

$ mkdir bld && cd bld

$../trunk/configure --prefix=`pwd`

$ make all install

Bootstrap is a 3 stage process

– Stage 0 (host) compiler builds Stage 1 compiler

– Stage 1 compiler builds Stage 2 compiler

– Stage 2 compiler builds Stage 3 compiler

– Stage 2 and Stage 3 compilers must be binary identical

November 27, 2007 GCC Internals - 23

Common configuration options

--prefix

– Installation root directory

--enable-languages

– Comma-separated list of language front ends to build

– Possible values

ada,c,c++,fortran,java,objc,obj-c++,treelang

– Default values

c,c++,fortran,java,objc

November 27, 2007 GCC Internals - 24

Common configuration options

--disable-bootstrap

– Build stage 1 compiler only

--target

– Specify target architecture for building a cross-compiler

– Target specification form is (roughly)
cpu-manufacturer-os
cpu-manufacturer-kernel-os

e.g. x86_64-unknown-linux-gnu
arm-unknown-elf

– All possible values in <src>/config.sub

November 27, 2007 GCC Internals - 25

Common configuration options

--enable-checking=list

– Perform compile-time consistency checks

– List of checks: assert fold gc gcac misc rtl
rtlflag runtime tree valgrind

– Global values:

yes → assert,misc,tree,gc,rtlflag,runtime

no Same as → --disable-checking

release Cheap checks → assert,runtime

all Everything except → valgrind

SLOW!

November 27, 2007 GCC Internals - 26

Common build options

-j N

– Usually scales up to 1.5x to 2x number of processors

all

– Default make target. Knows whether to bootstrap or not

install

– Not necessary but useful to test installed compiler

– Set LD_LIBRARY_PATH afterward

check

– Use with -k to prevent stopping when some tests fail

November 27, 2007 GCC Internals - 27

Build results

Staged compiler binaries
<bld>/stage1-{gcc,intl,libcpp,libdecnumber,libiberty}

<bld>/prev-{gcc,intl,libcpp,libdecnumber,libiberty}

<bld>/{gcc,intl,libcpp,libdecnumber,libiberty}

Runtime libraries are not staged, except libgcc

<bld>/<target-triplet>/lib*

Testsuite results
<bld>/gcc/testsuite/*.{log,sum}

<bld>/<target-triplet>/lib*/testsuite/*.{log,sum}







November 27, 2007 GCC Internals - 28

Build results

Compiler is split in several binaries

<bld>/gcc/xgcc Main driver

<bld>/gcc/cc1 C compiler

<bld>/gcc/cc1plus C++ compiler

<bld>/gcc/jc1 Java compiler

<bld>/gcc/f951 Fortran compiler

<bld>/gcc/gnat1 Ada compiler

Main driver forks one of the *1 binaries

<bld>/gcc/xgcc -v shows what compiler is used

November 27, 2007 GCC Internals - 29

Analyzing test results

The best way is to have two trees built

– pristine

– pristine + patch

Pristine tree can be recreated with

$ cp -a trunk trunk.pristine

$ cd trunk.pristine

$ svn revert -R .

Configure and build both compilers with the exact
same flags

November 27, 2007 GCC Internals - 30

Analyzing test results

Use <src>/trunk/contrib/compare_tests to compare
individual .sum files

$ cd <bld>/gcc/testsuite/gcc

$ compare_tests <bld.pristine>/gcc/testsuite/gcc/gcc.sum gcc.sum

Tests that now fail, but worked before:
gcc.c-torture/compile/20000403-2.c -Os (test for excess errors)

Tests that now work, but didn't before:
gcc.c-torture/compile/20000120-2.c -O0 (test for excess errors)
gcc.c-torture/compile/20000405-2.c -Os (test for excess errors)

November 27, 2007 GCC Internals - 31

2. Source code
➢ Source tree organization

➢ Configure, build, test

➢ Patch submission

November 27, 2007 GCC Internals - 32

Patch submission

Non-trivial contributions require copyright assignment

Code should follow the GNU coding conventions

– http://www.gnu.org/prep/standards_toc.html

– http://gcc.gnu.org/codingconventions.html

Submission should include

– ChangeLog describing what changed (not how nor why)

– Test case (if applicable)

– Patch itself generated with svn diff (context or unified)

http://www.gnu.org/prep/standards_toc.html
http://gcc.gnu.org/codingconventions.html

November 27, 2007 GCC Internals - 33

Patch submission

When testing a patch

1.Disable bootstrap

2.Build C front end only

3.Run regression testsuite

4.Once all failures have been fixed
• Enable all languages
• Run regression testsuite again

5.Enable bootstrap

6.Run regression testsuite

Patches are only accepted after #5 and #6 work on
1+ major platform (more than one sometimes).

1-4 not strictly
necessary, but
recommended

November 27, 2007 GCC Internals - 34

3. Internal architecture
➢ Compiler pipeline

➢ Intermediate representations

➢ CFG, statements, operands

➢ Alias analysis

➢ SSA forms

➢ Code generation

November 27, 2007 GCC Internals - 35

Compiler pipeline

GENERIC GIMPLE RTL Assembly

Front End Middle End Back End

SSA
Optimizer

Inter
Procedural
Optimizer

C

Fortran

Java

C++

RTL
Optimizer

Final Code
Generation

Call Graph
Manager

Pass
Manager

November 27, 2007 GCC Internals - 36

SSA Optimizers

Operate on GIMPLE

Around 100 passes

– Vectorization

– Various loop optimizations

– Traditional scalar optimizations: CCP, DCE, DSE, FRE,
PRE, VRP, SRA, jump threading, forward propagation

– Field-sensitive, points-to alias analysis

– Pointer checking instrumentation for C/C++

– Interprocedural analysis and optimizations: CCP, inlining,
points-to analysis, pure/const and type escape analysis

November 27, 2007 GCC Internals - 37

RTL Optimizers

Around 70 passes

Operate closer to the target

– Register allocation

– Scheduling

– Software pipelining

– Common subexpression elimination

– Instruction recombination

– Mode switching reduction

– Peephole optimizations

– Machine specific reorganization

November 27, 2007 GCC Internals - 38

3. Internal architecture
➢ Compiler pipeline

➢ Intermediate representations

➢ CFG, statements, operands

➢ Alias analysis

➢ SSA forms

➢ Code generation

November 27, 2007 GCC Internals - 39

GENERIC and GIMPLE

GENERIC is a common representation shared by all
front ends

– Parsers may build their own representation for convenience

– Once parsing is complete, they emit GENERIC

GIMPLE is a simplified version of GENERIC

– 3-address representation

– Restricted grammar to facilitate the job of optimizers

November 27, 2007 GCC Internals - 40

GENERIC and GIMPLE

GENERIC

 if (foo (a + b,c))

 c = b++ / a

endif

return c

High GIMPLE

 t1 = a + b

t2 = foo (t1, c)

if (t2 != 0)

 t3 = b

 b = b + 1

 c = t3 / a

endif

return c

Low GIMPLE

 t1 = a + b

t2 = foo (t1, c)

if (t2 != 0) <L1,L2>

L1:

t3 = b

b = b + 1

c = t3 / a

goto L3

L2:

L3:

return c

November 27, 2007 GCC Internals - 41

RTL

Register Transfer Language ≈ assembler for an
abstract machine with infinite registers

It represents low level features

– Register classes

– Memory addressing modes

– Word sizes and types

– Compare-and-branch instructions

– Calling conventions

– Bitfield operations

– Type and sign conversions

November 27, 2007 GCC Internals - 42

RTL

It is commonly represented in LISP-like form

Operands do not have types, but type modes

In this case they are all SImode (4-byte integers)

b = a - 1

(set (reg/v:SI 59 [b])
 (plus:SI (reg/v:SI 60 [a]
 (const_int -1 [0xffffffff]))))

November 27, 2007 GCC Internals - 43

3. Internal architecture
➢ Compiler pipeline

➢ Intermediate representations

➢ Control/data structures

➢ Alias analysis

➢ SSA forms

➢ Code generation

November 27, 2007 GCC Internals - 44

Callgraph

Every internal/external function is a node of type
struct cgraph_node

Call sites represented with edges of type struct
cgraph_edge

Every cgraph node contains

– Pointer to function declaration

– List of callers

– List of callees

– Nested functions (if any)

Indirect calls are not represented

November 27, 2007 GCC Internals - 45

Callgraph

Callgraph manager drives intraprocedural
optimization passes

For every node in the callgraph, it sets cfun and
current_function_decl

IPA passes must traverse callgraph on their own

Given a cgraph node

DECL_STRUCT_FUNCTION (node->decl)

points to the struct function instance that
contains all the necessary control and data flow
information for the function

November 27, 2007 GCC Internals - 46

Control Flow Graph

Built early during lowering

Survives until late in RTL

– Right before machine dependent transformations
(pass_machine_reorg)

In GIMPLE, instruction stream is physically split into
blocks

– All jump instructions replaced with edges

In RTL, the CFG is laid out over the double-linked
instruction stream

– Jump instructions preserved

November 27, 2007 GCC Internals - 47

Using the CFG

Every CFG accessor requires a struct function

argument

In intraprocedural mode, accessors have shorthand
aliases that use cfun by default

CFG is an array of double-linked blocks

The same data structures are used for GIMPLE and
RTL

Manipulation functions are callbacks that point to the
appropriate RTL or GIMPLE versions

November 27, 2007 GCC Internals - 48

3. Internal architecture
➢ Compiler pipeline

➢ Intermediate representations

➢ Control/data structures

➢ Alias analysis

➢ SSA forms

➢ Code generation

November 27, 2007 GCC Internals - 49

Overview

GIMPLE represents alias information explicitly

Alias analysis is just another pass

– Artificial symbols represent memory expressions (virtual
operands)

– FUD-chains computed on virtual operands → Virtual SSA

Transformations may prove a symbol non-
addressable

– Promoted to GIMPLE register

– Requires another aliasing pass

November 27, 2007 GCC Internals - 50

Alias Analysis

Points-to alias analysis (PTAA)

– Based on constraint graphs

– Field and flow sensitive, context insensitive

– Intra-procedural (inter-procedural in 4.2)

– Fairly precise

Type-based analysis (TBAA)

– Based on input language rules

– Field sensitive, flow insensitive

– Very imprecise

November 27, 2007 GCC Internals - 51

Alias Analysis

Two kinds of pointers are considered

– Symbols: Points-to is flow-insensitive

• Associated to Symbol Memory Tags (SMT)

– SSA names: Points-to is flow-sensitive

• Associated to Name Memory Tags (NMT)

Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr

November 27, 2007 GCC Internals - 52

Structural Analysis

Separate structure fields are assigned distinct
symbols

struct A
{
 int x;
 int y;
 int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are
mapped to the corresponding sub-
variable

November 27, 2007 GCC Internals - 53

IL Representation

foo (i, a, b, *p)
{
 p =(i > 10) ? &a : &b
 *p = 3
 return a + b
}

foo (i, a, b, *p)
{
 p = (i > 10) ? &a : &b

 # a = VDEF <a>
 # b = VDEF
 *p = 3

 # VUSE <a>
 t1 = a

 # VUSE
 t2 = b

 t3 = t1 + t2
 return t3
}

November 27, 2007 GCC Internals - 54

Alias analysis in RTL

Pure query system

Pairwise disambiguation of memory references

– Does store to A affect load from B?

– Mostly type-based (same predicates used in GIMPLE's
TBAA)

Very little information passed on from GIMPLE

November 27, 2007 GCC Internals - 55

Alias analysis in RTL

Some symbolic information preserved in RTL
memory expressions

– Base + offset associated to aggregate refs

– Memory symbols

Tracking of memory addresses by propagating values
through registers

Each pass is responsible for querying the alias
system with pairs of addresses

November 27, 2007 GCC Internals - 56

Alias analysis in RTL – Problems

Big impedance between GIMPLE and RTL

– No/little information transfer

– Producers and consumers use different models

– GIMPLE → explicit representation in IL

– RTL → query-based disambiguation

Work underway to resolve this mismatch

– Results of alias analysis exported from GIMPLE

– Adapt explicit representation to query system

November 27, 2007 GCC Internals - 57

3. Internal architecture
➢ Compiler pipeline

➢ Intermediate representations

➢ Control/data structures

➢ Alias analysis

➢ SSA forms

➢ Code generation

November 27, 2007 GCC Internals - 58

SSA Form

Static Single Assignment (SSA)

Versioning representation to
expose data flow explicitly

Assignments generate new
versions of symbols

Convergence of multiple versions
generates new one (functions)Φ

a
1
 = 3

b
2
 = 9

if (i
3
 > 20)

a
3
 = a

1
 – 2

b
4
 = b

2
 + a

3

a
5
 = a

1
 + 1

a
6
 = (Φ a

3
, a

5
)

b
7
 = (Φ b

4
, b

2
)

c
8
 = a

6
 + b

7

November 27, 2007 GCC Internals - 59

SSA Form

Rewriting (or standard) SSA form

– Used for real operands

– Different names for the same symbol are distinct objects

– overlapping live ranges (OLR) are allowed

– Program is taken out of SSA form for RTL generation (new
symbols are created to fix OLR)

if (x
2
 > 4)

 z
5
 = x

3
 – 1

if (x.1 > 4)
 z = x – 1

x
2

 → x.1

x
3

 → x

z
5

 → z

Conversion to
normal form

November 27, 2007 GCC Internals - 60

SSA Form

Factored Use-Def Chains (FUD Chains)

– Also known as Virtual SSA Form

– Used for virtual operands.

– All names refer to the same object.

– Optimizers may not produce OLR for virtual operands.

if (x
2
[2] > 4)

 z
5
 = x

3
[5] – 1

if (x.1[2] > 4)
 z = x[5] – 1

x
2

 → x.1

x
3

 → x

z
5

 → z

Conversion to
normal form

Memory copies!

November 27, 2007 GCC Internals - 61

Virtual SSA Form

VDEF operand needed to
maintain DEF-DEF links

They also prevent code
movement that would
cross stores after loads

When alias sets grow too
big, static grouping
heuristic reduces number
of virtual operators in
aliased references

foo (i, a, b, *p)
{
 p_2 = (i_1 > 10) ? &a : &b

 # a_4 = VDEF <a_11>
 a = 9;

 # a_5 = VDEF <a_4>
 # b_7 = VDEF <b_6>
 *p_2 = 3;

 # VUSE <a_5>
 t1_8 = a;

 t3_10 = t1_8 + 5;
 return t3_10;
}

November 27, 2007 GCC Internals - 62

Incremental SSA form

SSA forms are kept up-to-date incrementally

Manually

– As long as SSA property is maintained, passes may introduce
new SSA names and PHI nodes on their own

– Often this is the quickest way

Automatically using update_ssa

– Marking individual symbols (mark_sym_for_renaming)

– name → name mappings (register_new_name_mapping)

– Passes that invalidate SSA form must set TODO_update_ssa

November 27, 2007 GCC Internals - 63

3. Internal architecture
➢ Compiler pipeline

➢ Intermediate representations

➢ Control/data structures

➢ Alias analysis

➢ SSA forms

➢ Code generation

November 27, 2007 GCC Internals - 64

Code generation

Code is generated using a rewriting system

Target specific configuration files in

gcc/config/<arch>

Three main target-specific files

– <arch>.md Code generation patterns for RTL insns

– <arch>.h Definition of target capabilities (register
classes, calling conventions, type sizes,
etc)

– <arch>.c Support functions for code generation,
predicates and target variants

November 27, 2007 GCC Internals - 65

Code generation

Two main types of rewriting schemes supported

– Simple mappings from RTL to assembly (define_insn)

– Complex mappings from RTL to RTL (define_expand)

define_insn patterns have five elements

(define_insn "addsi3"

 [(set (match_operand:SI 0 "integer_register_operand" "=d")
 (plus:SI (match_operand:SI 1 "integer_register_operand" "%d")
 (match_operand:SI 2 "gpr_or_int12_operand" "dNOPQ")))]

 ""

 "add%I2 %1,%2,%0"

 [(set_attr "length" "4")
 (set_attr "type" "int")])

1- Pattern name (optional)
2- RTL

template

3- Additional matching
predicate

4- Assembly output
template

5- Attributes associated
with this pattern (optional)

November 27, 2007 GCC Internals - 66

Code generation

define_insn � addsi3�

Named patterns

– Used to generate RTL

– Some standard names are used by code generator

– Some missing standard names are replaced with library calls
(e.g., divsi3 for targets with no division operation)

– Some pattern names are mandatory (e.g. move operations)

Unnamed (anonymous) patterns do not generate
RTL, but can be used in insn combination

November 27, 2007 GCC Internals - 67

Code generation

[(set (match_operand:SI 0 "integer_register_operand" "=d,=d")
 (plus:SI (match_operand:SI 1 "integer_register_operand" "%d,m")
 (match_operand:SI 2 "gpr_or_int12_operand""dNOPQ,m")))]

Constraints provide second level of matching
Select best operand among the set of allowed operands
Letters describe kinds of operands
Multiple alternatives separated by commas

Matching uses
Machine mode (SI, DI, HI, SF, etc)
Predicate (a C function)
Both operands and operators can be matched

November 27, 2007 GCC Internals - 68

Code generation

"add%I2 %1,%2,%0"

Code is generated by emitting strings of target
assembly

Operands in the insn pattern are replaced in the %n
placeholders

If constraints list multiple alternatives, multiple output
strings must be used

Output may be a simple string or a C function that
builds the output string

November 27, 2007 GCC Internals - 69

Pattern expansion

Some standard patterns cannot be used to produce
final target code. Two ways to handle it

– Do nothing. Some patterns can be expanded to libcalls

– Use define_expand to generate matchable RTL

Four elements

– The name of a standard insn

– Vector of RTL expressions to generate for this insn

– A C expression acting as predicate to express availability of
this instruction

– A C expression used to generate operands or more RTL

November 27, 2007 GCC Internals - 70

Pattern expansion

(define_expand "ashlsi3"
 [(set (match_operand:SI 0 "register_operand" "")
 (ashift:SI
 (match_operand:SI 1 "register_operand" "")
 (match_operand:SI 2 "nonmemory_operand" "")))]
 ""
 "{
 if (GET_CODE (operands[2]) != CONST_INT
 || (unsigned) INTVAL (operands[2]) > 3)
 FAIL;
 }")

– Generate a left shift only when the shift count is [0...3]

– FAIL indicates that expansion did not succeed and a
different expansion should be tried (e.g., a library call)

– DONE is used to prevent emitting the RTL pattern. C
fragment responsible for emitting all insns.

November 27, 2007 GCC Internals - 71

4. Passes
➢ Adding a new pass

➢ Debugging dumps

November 27, 2007 GCC Internals - 72

Adding a new pass

To implement a new pass

– Add a new file to trunk/gcc or edit an existing pass

– Add a new target rule in Makefile.in

– If a flag is required to trigger the pass, add it to
common.opt

– Create an instance of struct tree_opt_pass

– Declare it in tree-pass.h

– Sequence it in init_optimization_passes

– Add a gate function to read the new flag

– Document pass in trunk/gcc/doc/invoke.texi

November 27, 2007 GCC Internals - 73

Available features

APIs available for

– CFG: block/edge insertion, removal, dominance information,
block iterators, dominance tree walker.

– Statements: insertion in block and edge, removal, iterators,
replacement.

– Operands: iterators, replacement.

– Loop discovery and manipulation.

– Data dependency information (scalar evolutions framework).

November 27, 2007 GCC Internals - 74

Available features

Other available infrastructure
– Debugging dumps (-fdump-tree-...)

– Timers for profiling passes (-ftime-report)

– CFG/GIMPLE/SSA verification (--enable-checking)

– Generic value propagation engine with callbacks for
statement and node visits.Φ

– Generic use-def chain walker.

– Support in test harness for scanning dump files looking for
specific transformations.

– Pass manager for scheduling passes and describing
interdependencies, attributes required and attributes
provided.

November 27, 2007 GCC Internals - 75

4. Passes
➢ Adding a new pass

➢ Debugging

November 27, 2007 GCC Internals - 76

Debugging dumps

Most passes understand the -fdump switches

-fdump-<ir>-<pass>[-<flag1>[-<flag2>]...]

ipa
tree
rtl

● inline, dce, alias, combine ...
● all to enable all dumps
● Possible values taken from name

field in struct tree_opt_pass

● details, stats, blocks, ...
● all enables all flags
● Possible values taken from

array dump_options

November 27, 2007 GCC Internals - 77

Debugging dumps

Adding dumps to your pass

– Specify a name for the dump in struct tree_opt_pass

– To request a dump at the end of the pass add
TODO_dump_func in todo_flags_finish field

To emit debugging information during the pass

– Variable dump_file is set if dumps are enabled

– Variable dump_flags is a bitmask that specifies
what flags were selected

– Some common useful flags: TDF_DETAILS,
TDF_STATS

November 27, 2007 GCC Internals - 78

Using gdb

Never debug the gcc binary, that is only the driver

The real compiler is one of cc1, jc1, f951, ...

$ <bld>/bin/gcc -O2 -v -save-temps -c a.c
Using built-in specs.
Target: x86_64-unknown-linux-gnu
Configured with: [...]
[...]
End of search list.
<path>/cc1 -fpreprocessed a.i -quiet -dumpbase a.c
-mtune=generic -auxbase a -O2 -version -o a.s

$ gdb --args <path>/cc1 -fpreprocessed a.i -quiet -dumpbase
a.c -mtune=generic -auxbase a -O2 -version -o a.s

November 27, 2007 GCC Internals - 79

Using gdb

The build directory contains a .gdbinit file with
many useful wrappers around debugging functions

When debugging a bootstrapped compiler, try to use
the stage 1 compiler

The stage 2 and stage 3 compilers are built with
optimizations enabled (may confuse debugging)

To recreate testsuite failures, cut and paste
command line from
<bld>/gcc/testsuite/{gcc,gfortran,g++,java}/*.log

November 27, 2007 GCC Internals - 80

Current and Future Projects

81November 5, 2007

Link Time Optimization

Delay optimization until link time

– IR for each compilation unit (CU) is streamed out

– Multiple CUs are read and combined together

Enables “whole program mode” optimization

– Increased optimization opportunities

Challenges

– Compile time

– Memory consumption

– Combining CUs from different languages

November 27, 2007 GCC Internals - 82

Plug-in Support

Extensibility mechanism to allow 3rd party tools

Wrap some internal APIs for external use

Allow loading of external shared modules

– Loaded module becomes another pass

– Compiler flag determines location

Versioning scheme prevents mismatching

Useful for

– Static analysis

– Experimenting with new transformations

November 27, 2007 GCC Internals - 83

Scheduling

Several concurrent efforts targetting 4.3 and 4.4

– Schedule over larger regions for increased parallelism

– Most target IA64, but benefit all architectures

Enhanced selective scheduling

Treegion scheduling

Superblock scheduling

Improvements to swing modulo scheduling

November 27, 2007 GCC Internals - 84

Register Allocation

Several efforts over the years

– Complex problem

– Many different targets to handle

– Interactions with reload and scheduling

YARA (Yet Another Register Allocator)

– Experimented with several algorithms

IRA (Integrated Register Allocator)

– Priority coloring, Chaitin-Briggs and region based

– Expected in 4.4

– Currently works on x86, x86-64, ppc, IA64, sparc, s390

November 27, 2007 GCC Internals - 85

Register pressure reduction

SSA may cause excessive register pressure

– Pathological cases → ~800 live registers

– RA battle lost before it begins

Short term project to cope with RA deficiencies

Implement register pressure reduction in GIMPLE
before going to RTL

– Pre-spilling combined with live range splitting

– Load rematerialization

– Tie RTL generation into out-of-ssa to allow better instruction
selection for spills and rematerialization

November 27, 2007 GCC Internals - 86

Dynamic compilation

Delay compilation until runtime (JIT)

– Emit bytecodes

– Implement virtual machine with optimizing transformations

Leverage on existing infrastructure (LLVM, LTO)

Not appropriate for every case

Challenges

– Still active research

– Different models/costs for static and dynamic compilers

November 27, 2007 GCC Internals - 87

Incremental Compilation

Speed up edit-compile-debug cycle

Speeds up ordinary compiles by compiling a given
header file “once”

Incremental changes fed to compiler daemon

Incremental linking as well

Side effects

– Refactoring

– Cross-referencing

– Compile-while-you-type (e.g., Eclipse)

November 27, 2007 GCC Internals - 88

Dynamic Optimization Pipeline

Phase ordering not optimal for every case

Current static ordering difficult to change

Allow external re-ordering

– Ultimate control

– Allow experimenting with different orderings

– Define -On based on common orderings

Problems

– Probability of finding bugs increases

– Enormous search space

November 27, 2007 GCC Internals - 89

Contacts

Home page http://gcc.gnu.org/

Wiki http://gcc.gnu.org/wiki

Mailing lists gcc@gcc.gnu.org
gcc-patches@gcc.gnu.org

IRC irc.oft.net/#gcc

http://gcc.gnu.org/
http://gcc.gnu.org/wiki
mailto:gcc@gcc.gnu.org
mailto:gcc-patches@gcc.gnu.org
irc://irc.oft.net/#gcc

