GCC Internals
Internal Representations

Google

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

GENERIC and GIMPLE Google

» GENERIC is a common representation shared by all
front ends

— Parsers may build their own representation for convenience

— Once parsing is complete, they emit GENERIC

» GIMPLE is a simplified version of GENERIC

— 3-address representation

— Restricted grammar to facilitate the job of optimizers

November 27, 2007 GCC Internals - IRs - 2

GENERIC and GIMPLE Google

GENERIC High GIMPLE Low GIMPLE
1f (foo (a + b,c)) tl = a + Db tl = a + Db
c = b++ / a t2 = foo (tl, <) t2 = foo (tl, <)
endif if (€2 !'= 0) if (t2 !'= 0) <Ll1l,L2>
return c t3 =D L1:
b =Db + 1 t3 =D
c =t3 / a b =Db + 1
endif c =1t3 / a
return c goto L3
L2
L3
return c

November 27, 2007 GCC Internals - IRs - 3

GIMPLE Google

» No hidden/implicit side-effects

» Simplified control flow
— Loops represented with 1 £/goto

— Lexical scopes removed (low-GIMPLE)

» Locals of scalar types are treated as “registers” (real
operands)

» Globals, aliased variables and non-scalar types
treated as "memory” (virtual operands)

November 27, 2007 GCC Internals - IRs - 4

GIMPLE Google

» At most one memory load/store operation per
statement

— Memory loads only on RHS of assignments

— Stores only on LHS of assignments

» Can be incrementally lowered (2 levels currently)
— High GIMPLE - lexical scopes and inline parallel regions

— Low GIMPLE - no scopes and out-of-line parallel regions

» |t contains extensions to represent explicit parallelism
(OpenMP)

November 27, 2007 GCC Internals - IRs - 5

GIMPLE statements Google

GIMPLE statements are instances of type t r ee
\,__\/_/

Every block contains a double-linked list of L>For now
statements

» Manipulation done through iterators

bl ock_statenent iterator si;
basi ¢c_bl ock bb;
FOR_EACH BB(bb)
for (si = bsi_start(bb); !'bsi_end p(si); bsi_next(&si))
print_generic_stnt (stderr, bsi_stnt(si), 0);

Statements can be inserted and removed inside the
block or on edges

November 27, 2007 GCC Internals - IRs - 6

GIMPLE statement operands Google

» Real operands (DEF, USE)

— Non-aliased, scalar, local variables
— Atomic references to the whole object

— GIMPLE “registers” (may not fit in a physical register)

» Virtual or memory operands (VDEF, VUSE)

— Globals, aliased, structures, arrays, pointer dereferences
— Potential and/or partial references to the object

— Distinction becomes important when building SSA form

November 27, 2007 GCC Internals - IRs - 7

GIMPLE statement operands Google

» Real operands are part of the statement

Int a, b, cC
c=a+hb

» Virtual operands are represented by two operators
VDEF and VUSE

c[100]
*P = (1 >10) ? & . &b

| nt
| nt
a = VDEF <a>
b = VDEF
VUSE[<]c>\ a or b may be defined
*P = cfI
c[1] is a partial load from c

November 27, 2007 GCC Internals - IRs - 8

Accessing GIMPLE operands Google

use_operand_p use;
ssa op_iter 1I;
FOR _EACH SSA USE OPERAND (use, stnt, i, SSA OP ALL USES)

{
tree op = USE FROM PTR (use);
print_generic_expr (stderr, op, 0);

}

» Prints all USE and VUSE operands from st nt

» SSA OP ALL USES filters which operands are of
interest during iteration

» For DEF and VDEF operands, replace “use” with
“def” above

November 27, 2007 GCC Internals - IRs - 9

GIMPLE tuples Google

» More compact data structure than tree

o Statements no longer an expression tree
a=>b + c

= code =
/\ subcode
a 4 next
prev
Y\ b
b ¢ op0 a
op1 b
op2 C
tree code size (=) = 64
+ tree code size (+) = 64 : ,
+ sizeof (annotation)= 96 gimple size (=) = 128

224 //4
» 64 bit host

November 27, 2007 GCC Internals - IRs - 10

GIMPLE tuples Google

» Fewer pointers
— Less scattered allocation
— Simplified pickling for streaming

— Potentially improved cache behaviour
» Currently only statements are converted

» Symbols and memory expressions are still
represented with tree

» Expect modest overall memory savings (5% to 15%)

» Bigger memory consumption: declarations, types,
debug info

November 27, 2007 GCC Internals - IRs - 11

GIMPLE tuples Google

» Challenges

— Pervasive use of tree data structure

— New APIls are needed

— RTL expansion tuned to fat expression trees (codegen
differences)

» Status
— Basic lowering, CFG and cgraph working

— RTL expansion in progress

— All analysis and optimization passes need to be converted

November 27, 2007 GCC Internals - IRs - 12

RTL Google

» Register Transfer Language = assembler for an
abstract machine with infinite registers

» |t represents low level features
— Register classes
— Memory addressing modes
— Word sizes and types
— Compare-and-branch instructions
— Calling conventions
— Bitfield operations

— Type and sign conversions

November 27, 2007 GCC Internals - IRs - 13

RTL Google

b=a-1

.

(set (reg/v:SI 59 [b])
(plus:SI (reg/v:SI 60 [a]
(const int -1 [Oxffffffff]))))

» |t is commonly represented in LISP-like form
» Operands do not have types, but type modes

» In this case they are all SI node (4-byte integers)

November 27, 2007 GCC Internals - IRs - 14

RTL statements Google
» RTL statements (insns) are instances of type rt x

» Unlike GIMPLE statements, RTL insns contain
embedded links

» Six types of RTL insns
| NSN Regular, non-jumping instruction
JUMP_| NSN Conditional and unconditional jumps
CALL | NSN Function calls
CODE LABEL Target label for JUMP_| NSN
BARRI ER Control flow stops here
NOTE Debugging information

November 27, 2007 GCC Internals - IRs - 15

RTL statements Google

» Some elements of an RTL insn

PREV | NSN Previous statement

NEXT | NSN Next statement

PATTERN Body of the statement

| NSN_CODE Number for the matching machine
description pattern (-1 if not yet recog'd)

LOG LI NKS Links dependent insns in the same block

Used for instruction combination

REG NOTES Annotations regarding register usage

November 27, 2007 GCC Internals - IRs - 16

RTL statements Google

» Traversing all RTL statements

basi c_bl ock bb;
FOR_EACH BB (bb)
{
rtx insn = BB HEAD (bb);
while (insn !'= BB END (bb))
{
print_rtl_single (stderr, insn);
I nsn = NEXT_ I NSN (1 nsn);
}

November 27, 2007 GCC Internals - IRs - 17

RTL operands Google

» No operand iterators, but RTL expressions are very
regular

» Number of operands and their types are defined in

rtl. def

GET_RTX LENGTH Number of operands

GET_RTX_FORNAT Format string describing operand
types

XEXP/ XI NT/ XSTR/ . . . Operand accessors

GET_RTX_CLASS Similar expressions are

categorized in classes

November 27, 2007 GCC Internals - IRs - 18

RTL operands Google

» Operands and expressions have modes, not types
» Supported modes will depend on target capabilities

> Some common modes

Q node Quarter Integer (single byte)
Hl node Half Integer (two bytes)

Sl node Single Integer (four bytes)
Dl node Double Integer (eight bytes)

» Modes are defined in machnode. def

November 27, 2007 GCC Internals - IRs - 19

