GCC Internals
Control and data flow support

Google

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

Control/Data Flow support Google

» Call Graph (cgraph)
» Control Flow Graph (CFG)
» Static Single Assignment in GIMPLE (SSA)

» Loop Nest Optimizations
— Natural loops
— Scalar evolutions
— Data dependency tests

Data-flow analysis in RTL (DF)

November 27, 2007 GCC Internals - Control/Data Flow - 2

Call Graph Google

» Every internal/external function is a node of type
struct cgraph _node

» Call sites represented with edges of type st r uct
cgraph_edge

» Every cgraph node contains
— Pointer to function declaration
— List of callers
— List of callees
— Nested functions (if any)

Indirect calls are not represented

November 27, 2007 GCC Internals - Control/Data Flow - 3

Call Graph Google

» Callgraph manager drives intraprocedural
optimization passes

» For every node in the callgraph, it sets cf un and
current function _decl

» |PA passes must traverse callgraph on their own

» Given a cgraph node
DECL STRUCT _FUNCTI ON (node- >decl)

points to the st ruct functi on instance that

contains all the necessary control and data flow
information for the function

November 27, 2007 GCC Internals - Control/Data Flow - 4

Control Flow Graph Google

» Built early during lowering

» Survives until late in RTL
— Right before machine dependent transformations
(pass_nachi ne_reorg)

In GIMPLE, instruction stream is physically split into
blocks

— All jump instructions replaced with edges

In RTL, the CFG is laid out over the double-linked
Instruction stream

— Jump instructions preserved

November 27, 2007 GCC Internals - Control/Data Flow - 5

Using the CFG Google

» Every CFG accessor requires a struct functi on
argument

» In intraprocedural mode, accessors have shorthand
aliases that use cf un by default

» CFG is an array of double-linked blocks

» The same data structures are used for GIMPLE and
RTL

» Manipulation functions are callbacks that point to the
appropriate RTL or GIMPLE versions

November 27, 2007 GCC Internals - Control/Data Flow - 6

Using the CFG - Callbacks Google

» Declared instruct cfg hooks

creat e basic bl ock

redi rect _edge_and branch
del et e _basi c_Dbl ock
can_nerge_bl ocks p

nmer ge_bl ocks
can_duplicate bl ock p
dupl i cat e_bl ock
split_edge

» Mostly used by generic CFG cleanup code

» Passes working with one IL may make direct calls

November 27, 2007 GCC Internals - Control/Data Flow - 7

Using the CFG - Accessors Google

basi ¢c_bl ock_info for function(fn) Sparse array of basic blocks
basi ¢c_bl ock info

BASI C_BLOCK_FOR _FUNCTI ON(fn, n) Get basic block N
BASI C_BLOCK (n)

n_basi c_bl ocks _for function(fn) Number of blocks
n_basi c_bl ocks

n_edges for_ function(fn) Number of edges
n_edges

| ast _basi c_bl ock for function(fn) First free slot in array of
| ast _basi ¢_bl ock blocks (# n_basi ¢c_bl ocks)

ENTRY_BLOCK_PTR_FOR_FUNCTI ON(f n) Entry point
ENTRY_BLOCK_PTR

EXI T_BLOCK_PTR_FOR_FUNCTI ON(f n) Exit point

EXI T_BLOCK PTR

November 27, 2007 GCC Internals - Control/Data Flow - 8

Using the CFG - Traversals Google

The block array is sparse, never iterate with
for (i =0, + < n_basic blocks; | ++)

Basic blocks are of type basi ¢_bl ock

Edges are of type edge

Linear traversals

FOR EACH BB FN (bb, fn)
FOR EACH BB (bb)

FOR _EACH BB REVERSE FN (bb, fn)
FOR _EACH BB_REVERSE (bb)

FOR BB BETWEEN (bb, from to, {next _bb| prev_bb})

November 27, 2007 GCC Internals - Control/Data Flow - 9

Using the CFG - Traversals Google

» Traversing successors/predecessors of block bb

edge e;

edge iterator ei;

FOR EACH EDGE (e, el, bb->{succs]|preds})
do_sonething (e);

» Linear CFG traversals are essentially random

» Ordered walks possible with dominator traversals

— Direct dominator traversals
— Indirect dominator traversals via walker w/ callbacks

November 27, 2007 GCC Internals - Control/Data Flow - 10

Using the CFG - Traversals Google

» Direct dominator traversals

— Walking all blocks dominated by bb

for (son = first_domson (CD _DOM NATORS, bb);
son;
son = next_dom son (CDI _DOM NATORS, son))
— Walking all blocks post-dominated by bb

for (son = first_domson (CD _POST _DOM NATORS, bb);
son;
son = next_dom son (CDI _POST_DOM NATORS, son)

— To start at the top of the CFG

FOR EACH EDGE (e, ei, ENTRY BLOCK PTR->succs)
dom traversal (e->dest);

November 27, 2007 GCC Internals - Control/Data Flow - 11

Using the CFG - Traversals Google

wal k_dom nator _tree()

Dominator tree walker with callbacks

» Walks blocks and statements in either direction

» Up to six walker callbacks supported

Before and after dominator children

_ 1. Before walking statements
2. Called for every GIMPLE statement in the block
3. After walking statements

x2 >

o

» \Walker can also provide block-local data to keep
pass-specific information during traversal

November 27, 2007 GCC Internals - Control/Data Flow - 12

SSA Form Google

Static Single Assignment (SSA)

a = 3
1
b =9
2
» Versioning representation to ¢
expose data flow explicitly if (i, > 20)
» Assignments generate new /\
versions of symbols
a = a - 2
. . ! a =a + 1
» Convergence of multiple versions | 2. = P, * 2.
generates new one (® functions) \/
a = q)(a , a)
6 3 5
b = cb(b ’ b)
7 4 2
cC =a + b
8 6 7

November 27, 2007 GCC Internals - Control/Data Flow - 13

SSA Form Google

» Rewriting (or standard) SSA form
— Used for real operands
— Different names for the same symbol are distinct objects
— overlapping live ranges (OLR) are allowed

— Program is taken out of SSA form for RTL generation (new
symbols are created to fix OLR)

X, 2> x.1
if (x.1 > 4)

z = x - 1 z =X — 1
5 3 25—>z

Conversion to
normal form

November 27, 2007 GCC Internals - Control/Data Flow - 14

SSA Form Google

» Factored Use-Def Chains (FUD Chains)

— Also known as Virtual SSA Form

— Used for virtual operands.

— All names refer to the same object.

— Optimizers may not produce OLR for virtual operands.

/Memory copies!

| X ->x.1
if (x2[2] > 4) xS x \»if (x.1[2] > 4)
z. = x[5] -1 3 z = x[5] - 1

7 =27
5

Conversion to
normal form

November 27, 2007 GCC Internals - Control/Data Flow - 15

Virtual SSA Form

» VDEF operand needed to
maintain DEF-DEF links

» They also prevent code
movement that would
cross stores after loads

» When alias sets grow too
big, static grouping
heuristic reduces number
of virtual operators in
aliased references

November 27, 2007

Google

foo (i, a, b, *p)

{
p2=(i_1>10) ? & : &b

i a 4 = VDEF <a 11>
a = 9:

t3 10 =t1 8 + 5;
return t3 10;

GCC Internals - Control/Data Flow - 16

Incremental SSA form Google

SSA forms are kept up-to-date incrementally

Manually

— As long as SSA property is maintained, passes may introduce
new SSA names and PHI nodes on their own

— Often this is the quickest way

Automatically using updat e_ssa
— Marking individual symbols (mark sym for renaming)
— name - name mappings (register new name mapping)
— Passes that invalidate SSA form must set TODO update ssa

— Symbols with OLRs must not be marked for renaming

November 27, 2007 GCC Internals - Control/Data Flow - 17

SSA Implementation Google

» tree-1into-ssa.c
— Pass to put function in SSA form (pass build ssa)

— Helpers to incrementally update SSA form (update ssa)

e tree-outof-ssa.c

— Pass to take function out of SSA form (pass del ssa)

» tree-ssa.cC
— Helpers for maintaining SSA data structures

— SSA form verifiers

November 27, 2007 GCC Internals - Control/Data Flow - 18

Loop Nest Optimization Google

» Based on natural loops

» Works on GIMPLE and RTL

» Number of iterations

» Induction variables (scalar evolutions)

» Data dependences
— Single/Multiple/Zero IV generalized Banerjee tests
— Omega test

November 27, 2007 GCC Internals - Control/Data Flow - 19

LNO — Loop Analysis and Manipulation Google

» Loop discovery
— loop-init.c:loop optimizer init builds loop tree

— loop-init.c:loop optimizer finalize releases loop
structures

» Loop discovery can enforce certain properties
— Force loops to have only one/many latch blocks

— Force loops to have preheader blocks
Useful for unrolling,

— Mark irreducible regions / peeling, etc
oop

» Loop closed SSA form (rewrite_into_ _closed_ssa)

— Additional PHI nodes ensure that no SSA name is used
outside the loop that defines it

November 27, 2007 GCC Internals - Control/Data Flow - 20

LNO — Loop analysis Google

» Number of |OOpS: number of loops, get loop
@ LOOp nesting: flow loop nested p, find common loop

E LOOp bodies: flow bb inside loop p, get loop body,
get loop body in dom order, get loop body in bfs order

» Exit edges and exit blocks: 100p exit_edge p,

get loop exit edges, single exit

» Pre-header and latch edges: 10op preheader edge,
loop latch edge

» Loop iteration: ror_eacu roop

November 27, 2007 GCC Internals - Control/Data Flow - 21

LNO — Scalar Evolutions Google

» Based on chains of recurrences (chrec)

chrec(v) = {init, +, step}

» Given an SSA name N and loop L

— analyze scalar evolution (1, n) returns the
chrec for N in loop L

— instantiate parameters (1, chrec) tries to give
values to the symbolic expressions init and step

— initial condition in loop num retrieves initial
value

— evolution part in loop num retrieves step value

» Affine induction variable support in tree-affine.c

November 27, 2007 GCC Internals - Control/Data Flow - 22

LNO — Dependence Analysis Google

» compute data dependences for loop

— Returns list of memory references in the loop
— Returns list of data dependence edges for the loop

» Given a data dependence edge

— DDR_A, DDR_B are the two memory references
— DDR_ARE DEPENDENT is
« chrec_known No dependence

« chrec_dont know Could not analyze dependence
e NULL They are dependent

November 27, 2007 GCC Internals - Control/Data Flow - 23

LNO — Linear transformations Google

» Based on lambda-code representation

» Suitable for transformations that can be expressed
as linear transformations of iteration space
(interchange, reversal)

» Support functions in lambda-*.[ch]

» Loop nest must be converted to/from a lambda loop
nest for applying transformations

l.gcc_loopnest to lambda loopnest
2.lambda loopnest transform

3.lambda loopnest to gcc loopnest

November 27, 2007 GCC Internals - Control/Data Flow - 24

LNO - Optimizations Google

» GIMPLE

— Loop invariant motion, unswitching, interchange, unrolling
(pass_lim, pass_tree unswitch, pass linear transform,
pass_iv_optimize)

— Predictive commoning (pass_predcom)
— Vectorization (pass_vectorize)

— Array prefetching (pass loop prefetch)
— IV optimizations (pass_iv optimize)

» RTL

— Loop invariant motion, unswitching, unrolling, peeling
(pas s rtl move loop invariants, pass rtl unswitch,
pass_rtl_unroll_and_peel_loops)

— Decrement and branch instructions (pass rt1 doloop)

November 27, 2007 GCC Internals - Control/Data Flow - 25

Data Flow Analysis on RTL Google

» General framework for solving dataflow problems

» A separate representation of each RTL instruction
describes sets of defs and uses in each insn

» Representation is kept up-to-date as the IL is
modified

» Available between pass df initialize and
pass_df finish

» Implemented in df-core.c, df-problems.c and
df-scan.c

November 27, 2007 GCC Internals - Control/Data Flow - 26

Data Flow Analysis on RTL Google

» Three main steps

— df * add problem
Adds a new problem to solve: reaching defs (rd), live
variables (1ive), def-use or use-def chains (chain).

— df analyze

Solves all the problems added
Each basic block ends up with the corresponding IN and

OUT sets (DF_* BB INFO)

— df finish pass
Removes data-flow problems

» Data flow analysis may be done globally or on a
subset of nodes

November 27, 2007 GCC Internals - Control/Data Flow - 27

Data Flow Analysis on RTL Google

» Scanning allocates a descriptor for every register
defined or used in each instruction

— Changes to the instruction need to be reflected into the
descriptor
» Rescanning support exists for
— Immediate updates
— Deferred updates
— Total updates
— Manual updates

November 27, 2007 GCC Internals - Control/Data Flow - 28

