
GCC Internals
Control and data flow support

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

November 27, 2007 GCC Internals – Control/Data Flow - 2

Control/Data Flow support

Call Graph (cgraph)

Control Flow Graph (CFG)

Static Single Assignment in GIMPLE (SSA)

Loop Nest Optimizations

– Natural loops

– Scalar evolutions

– Data dependency tests

Data-flow analysis in RTL (DF)

November 27, 2007 GCC Internals – Control/Data Flow - 3

Call Graph

Every internal/external function is a node of type
struct cgraph_node

Call sites represented with edges of type struct
cgraph_edge

Every cgraph node contains

– Pointer to function declaration

– List of callers

– List of callees

– Nested functions (if any)

Indirect calls are not represented

November 27, 2007 GCC Internals – Control/Data Flow - 4

Call Graph

Callgraph manager drives intraprocedural
optimization passes

For every node in the callgraph, it sets cfun and
current_function_decl

IPA passes must traverse callgraph on their own

Given a cgraph node

DECL_STRUCT_FUNCTION (node->decl)

points to the struct function instance that
contains all the necessary control and data flow
information for the function

November 27, 2007 GCC Internals – Control/Data Flow - 5

Control Flow Graph

Built early during lowering

Survives until late in RTL

– Right before machine dependent transformations
(pass_machine_reorg)

In GIMPLE, instruction stream is physically split into
blocks

– All jump instructions replaced with edges

In RTL, the CFG is laid out over the double-linked
instruction stream

– Jump instructions preserved

November 27, 2007 GCC Internals – Control/Data Flow - 6

Using the CFG

Every CFG accessor requires a struct function
argument

In intraprocedural mode, accessors have shorthand
aliases that use cfun by default

CFG is an array of double-linked blocks

The same data structures are used for GIMPLE and
RTL

Manipulation functions are callbacks that point to the
appropriate RTL or GIMPLE versions

November 27, 2007 GCC Internals – Control/Data Flow - 7

Using the CFG - Callbacks

Declared in struct cfg_hooks
create_basic_block

redirect_edge_and_branch

delete_basic_block

can_merge_blocks_p

merge_blocks

can_duplicate_block_p

duplicate_block

split_edge

...

Mostly used by generic CFG cleanup code

Passes working with one IL may make direct calls

November 27, 2007 GCC Internals – Control/Data Flow - 8

Using the CFG - Accessors

basic_block_info_for_function(fn) Sparse array of basic blocks
basic_block_info

BASIC_BLOCK_FOR_FUNCTION(fn, n) Get basic block N
BASIC_BLOCK (n)

n_basic_blocks_for_function(fn) Number of blocks
n_basic_blocks

n_edges_for_function(fn) Number of edges
n_edges

last_basic_block_for_function(fn) First free slot in array of
last_basic_block blocks (≠ n_basic_blocks)

ENTRY_BLOCK_PTR_FOR_FUNCTION(fn) Entry point
ENTRY_BLOCK_PTR

EXIT_BLOCK_PTR_FOR_FUNCTION(fn) Exit point
EXIT_BLOCK_PTR

November 27, 2007 GCC Internals – Control/Data Flow - 9

Using the CFG - Traversals

The block array is sparse, never iterate with

for (i = 0; i < n_basic_blocks; i++)

Basic blocks are of type basic_block

Edges are of type edge

Linear traversals

FOR_EACH_BB_FN (bb, fn)
FOR_EACH_BB (bb)

FOR_EACH_BB_REVERSE_FN (bb, fn)
FOR_EACH_BB_REVERSE (bb)

FOR_BB_BETWEEN (bb, from, to, {next_bb|prev_bb})

November 27, 2007 GCC Internals – Control/Data Flow - 10

Using the CFG - Traversals

Traversing successors/predecessors of block bb

edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->{succs|preds})

do_something (e);

Linear CFG traversals are essentially random

Ordered walks possible with dominator traversals

– Direct dominator traversals

– Indirect dominator traversals via walker w/ callbacks

November 27, 2007 GCC Internals – Control/Data Flow - 11

Using the CFG - Traversals

Direct dominator traversals

– Walking all blocks dominated by bb
for (son = first_dom_son (CDI_DOMINATORS, bb);

son;
son = next_dom_son (CDI_DOMINATORS, son))

– Walking all blocks post-dominated by bb
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);

son;
son = next_dom_son (CDI_POST_DOMINATORS, son)

– To start at the top of the CFG
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
dom_traversal (e->dest);

November 27, 2007 GCC Internals – Control/Data Flow - 12

Using the CFG - Traversals

walk_dominator_tree()

Dominator tree walker with callbacks

Walks blocks and statements in either direction

Up to six walker callbacks supported

Before and after dominator children

1. Before walking statements

2. Called for every GIMPLE statement in the block

3. After walking statements

Walker can also provide block-local data to keep
pass-specific information during traversal

x2

November 27, 2007 GCC Internals – Control/Data Flow - 13

SSA Form

Static Single Assignment (SSA)

Versioning representation to
expose data flow explicitly

Assignments generate new
versions of symbols

Convergence of multiple versions
generates new one (functions)Φ

a
1
 = 3

b
2
 = 9

if (i
3
 > 20)

a
3
 = a

1
 – 2

b
4
 = b

2
 + a

3

a
5
 = a

1
 + 1

a
6
 = (Φ a

3
, a

5
)

b
7
 = (Φ b

4
, b

2
)

c
8
 = a

6
 + b

7

November 27, 2007 GCC Internals – Control/Data Flow - 14

SSA Form

Rewriting (or standard) SSA form

– Used for real operands

– Different names for the same symbol are distinct objects

– overlapping live ranges (OLR) are allowed

– Program is taken out of SSA form for RTL generation (new
symbols are created to fix OLR)

if (x
2
 > 4)

 z
5
 = x

3
 – 1

if (x.1 > 4)
 z = x – 1

x
2

 → x.1

x
3

 → x

z
5

 → z

Conversion to
normal form

November 27, 2007 GCC Internals – Control/Data Flow - 15

SSA Form

Factored Use-Def Chains (FUD Chains)

– Also known as Virtual SSA Form

– Used for virtual operands.

– All names refer to the same object.

– Optimizers may not produce OLR for virtual operands.

if (x
2
[2] > 4)

 z
5
 = x

3
[5] – 1

if (x.1[2] > 4)
 z = x[5] – 1

x
2

 → x.1

x
3

 → x

z
5

 → z

Conversion to
normal form

Memory copies!

November 27, 2007 GCC Internals – Control/Data Flow - 16

Virtual SSA Form

VDEF operand needed to
maintain DEF-DEF links

They also prevent code
movement that would
cross stores after loads

When alias sets grow too
big, static grouping
heuristic reduces number
of virtual operators in
aliased references

foo (i, a, b, *p)
{
 p_2 = (i_1 > 10) ? &a : &b

 # a_4 = VDEF <a_11>
 a = 9;

 # a_5 = VDEF <a_4>
 # b_7 = VDEF <b_6>
 *p_2 = 3;

 # VUSE <a_5>
 t1_8 = a;

 t3_10 = t1_8 + 5;
 return t3_10;
}

November 27, 2007 GCC Internals – Control/Data Flow - 17

Incremental SSA form

SSA forms are kept up-to-date incrementally

Manually

– As long as SSA property is maintained, passes may introduce
new SSA names and PHI nodes on their own

– Often this is the quickest way

Automatically using update_ssa

– Marking individual symbols (mark_sym_for_renaming)

– name → name mappings (register_new_name_mapping)

– Passes that invalidate SSA form must set TODO_update_ssa

– Symbols with OLRs must not be marked for renaming

November 27, 2007 GCC Internals – Control/Data Flow - 18

SSA Implementation

tree­into­ssa.c

– Pass to put function in SSA form (pass_build_ssa)

– Helpers to incrementally update SSA form (update_ssa)

tree­outof­ssa.c

– Pass to take function out of SSA form (pass_del_ssa)

tree­ssa.c

– Helpers for maintaining SSA data structures

– SSA form verifiers

November 27, 2007 GCC Internals – Control/Data Flow - 19

Loop Nest Optimization

Based on natural loops

Works on GIMPLE and RTL

Number of iterations

Induction variables (scalar evolutions)

Data dependences

– Single/Multiple/Zero IV generalized Banerjee tests

– Omega test

November 27, 2007 GCC Internals – Control/Data Flow - 20

LNO – Loop Analysis and Manipulation

Loop discovery

– loop­init.c:loop_optimizer_init builds loop tree

– loop­init.c:loop_optimizer_finalize releases loop
structures

Loop discovery can enforce certain properties

– Force loops to have only one/many latch blocks

– Force loops to have preheader blocks

– Mark irreducible regions

Loop closed SSA form (rewrite_into_loop_closed_ssa)

– Additional PHI nodes ensure that no SSA name is used
outside the loop that defines it

Useful for unrolling,
peeling, etc

November 27, 2007 GCC Internals – Control/Data Flow - 21

LNO – Loop analysis

Number of loops: number_of_loops, get_loop

Loop nesting: flow_loop_nested_p, find_common_loop

Loop bodies: flow_bb_inside_loop_p, get_loop_body,
get_loop_body_in_dom_order, get_loop_body_in_bfs_order

Exit edges and exit blocks: loop_exit_edge_p,
get_loop_exit_edges, single_exit

Pre-header and latch edges: loop_preheader_edge,
loop_latch_edge

Loop iteration: FOR_EACH_LOOP

November 27, 2007 GCC Internals – Control/Data Flow - 22

LNO – Scalar Evolutions

Based on chains of recurrences (chrec)

chrec(v) = {init, +, step}

Given an SSA name N and loop L

– analyze_scalar_evolution (l, n) returns the
chrec for N in loop L

– instantiate_parameters (l, chrec) tries to give
values to the symbolic expressions init and step

– initial_condition_in_loop_num retrieves initial
value

– evolution_part_in_loop_num retrieves step value

Affine induction variable support in tree­affine.c

November 27, 2007 GCC Internals – Control/Data Flow - 23

LNO – Dependence Analysis

compute_data_dependences_for_loop

– Returns list of memory references in the loop

– Returns list of data dependence edges for the loop

Given a data dependence edge

– DDR_A, DDR_B are the two memory references

– DDR_ARE_DEPENDENT is

• chrec_known No dependence

• chrec_dont_know Could not analyze dependence

• NULL They are dependent

November 27, 2007 GCC Internals – Control/Data Flow - 24

LNO – Linear transformations

Based on lambda-code representation

Suitable for transformations that can be expressed
as linear transformations of iteration space
(interchange, reversal)

Support functions in lambda­*.[ch]

Loop nest must be converted to/from a lambda loop
nest for applying transformations

1.gcc_loopnest_to_lambda_loopnest

2.lambda_loopnest_transform

3.lambda_loopnest_to_gcc_loopnest

November 27, 2007 GCC Internals – Control/Data Flow - 25

LNO - Optimizations

GIMPLE
– Loop invariant motion, unswitching, interchange, unrolling

(pass_lim, pass_tree_unswitch, pass_linear_transform,
pass_iv_optimize)

– Predictive commoning (pass_predcom)

– Vectorization (pass_vectorize)

– Array prefetching (pass_loop_prefetch)

– IV optimizations (pass_iv_optimize)

RTL
– Loop invariant motion, unswitching, unrolling, peeling

(pass_rtl_move_loop_invariants, pass_rtl_unswitch,
pass_rtl_unroll_and_peel_loops)

– Decrement and branch instructions (pass_rtl_doloop)

November 27, 2007 GCC Internals – Control/Data Flow - 26

Data Flow Analysis on RTL

General framework for solving dataflow problems

A separate representation of each RTL instruction
describes sets of defs and uses in each insn

Representation is kept up-to-date as the IL is
modified

Available between pass_df_initialize and
pass_df_finish

Implemented in df­core.c, df­problems.c and
df­scan.c

November 27, 2007 GCC Internals – Control/Data Flow - 27

Data Flow Analysis on RTL

Three main steps

– df_*_add_problem
Adds a new problem to solve: reaching defs (rd), live
variables (live), def-use or use-def chains (chain).

– df_analyze
Solves all the problems added
Each basic block ends up with the corresponding IN and
OUT sets (DF_*_BB_INFO)

– df_finish_pass
Removes data-flow problems

Data flow analysis may be done globally or on a
subset of nodes

November 27, 2007 GCC Internals – Control/Data Flow - 28

Data Flow Analysis on RTL

Scanning allocates a descriptor for every register
defined or used in each instruction

– Changes to the instruction need to be reflected into the
descriptor

Rescanning support exists for

– Immediate updates

– Deferred updates

– Total updates

– Manual updates

