Imagination Unlver5|ty P@m

(lUP)

N ’ all .llmllll"

l

: %D__/__‘:—— 1;'%@, L

B30, NE =4, OHl/25 A=
48 RISC-V chip9.| FPGA H &
o4& SoC 241 et A=
anE 1, EIXIEE* CIXtQl, |IHICIE A2,
EEJEHU mE=INY-]

7l W o= 25 Flet ux A=

RISC-V #+Z= / RVfpga 2
RVfpga SI=9|0] ALE
RVfpga Al&2]0]|M
Ooff x|
OpenOCD, PlatformlO, Verilator, GTKWave
Vivado, loT application
Nexys A7 FPGA Board
Western Digital SweRV EH1 Core

WS X of 1

B driversLinux_NexysA7
> W examples
> I Labs
> R src

B verilatorSIM

RVfpga Home Folder

B driversLinux_NexysA7

B examples

B Labs

R src

R verilatorSIM

«B RVfpga_GettingStartedGuide
B RVipga_GettingStartedGuide
B Rvipga_Slides

#B RVipga_Slides

> W examples
> W Labs
> W src

B verilatorSIM

Linux Drivers of Nexys A7 Board

B 52-xilinx-digilent-usb.rules
B 52-xilinx-ftdi-usb.rules

B 52-xilinx-pcusb.rules

B install_digilent.sh

B install_drivers

B setup_pcusb

B setup_xilinx_ftdi

W XIg g 3

v R Rvipga

>
>
b
b
>

>

>
b
b

=258 OlA I

R driversLinux_NexysA7

B AL _Operations

R Blinky

R DotProduct C-Lang
R Helloworld_C-Lang
B LedsSwitches

B LedsSwitches_C-Lang
R VectorSorting_C-Lang
R Labs

R src
R verilatorSIM

B AL_Operations

R Blinky

B DotProduct_C-Lang
B Helloworld_C-Lang
B LedsSwitches

B LedsSwitches_C-Lang
B VectorSorting_C-Lang

W XIg o 4

v R Rvipga R pio
W driversLinux_NexysA7 B commandLine
v W examples R include
DS
> @ plo R src
R commandLine . o
R gitignore
W include R travisyml
R lib & platformio
R src B README rst
B test
> W Blinky
> I DotProduct C-Lang
> I Helloworld_C-Lang
> W LedsSwitches
> W LedsSwitches_C-Lang
> W VectorSorting_C-Lang
> W Labs
> W src
R verilatorSIM

=258 0N Lt

mO

v R Rvipga « Rvipga_Lab00

B driversLinux_NexysA7 B Rvipga_Lab00
> W examples A Rvfpga Lab01
v B Labs B RVipga_Lab01

B Labi B RVipga_Lab02

S B Rvfpga_Lab02

<@ RVvipga Lab03

B Lab3 B RVipga Labo3

> W Lab4 « RVfpga_Lab04
> W Labs B Rvipga_Lab04
> B Lab7 A Rvfpga Lab0S
W Labo B RVipga_Lab05

«B RVfpga_Lab06
B Rvfpga_Lab06
«B RVipga_Lab07
R verilatorSIM : xgﬁx
B Rvipga_Lab08
<8 Rvipga_Lab0g
B RVipga_Lab09
8 Rvipga_Lab10
B Rvipga Lab10

> B RvipgaLabsSolutions

> B src

Al
—

zl>

v W Rvipga
W driversLinux_NexysA7

Oxl, =& =1

> W examples
v W Labs

v

=

Lab1

Lab2

Lab3

Lab4

Lab5

Lab7

Labg

LablInstructions
RvfpgaLabsSolutions

v R Programs_Solutions

R Lab4
> W Labs

R 4bitAdd.c

B Addvectors.c

B BubblesSort.c

B Displayinverse.c

B EvenPositiveNumbers.c
B Factorial.c

B ribonaccic

B FlashSwitchesToLEDs.c
R GcDc

B ScrollLEDs.c

R driversLinux_NexysA7
> I examples
> R Labs
v R src
o WleorRav
> [OtherSources
> W SweRVolfSoC
R verilatorSIM

AlS O A, Lite DRAM

B sen 102

B litedram_core.init
B litedram _corev
B litedram_top.v
B mem_iinit

=

ul= Xtz It 8

v B Rvipga
B driversLinux_NexysA7
> W examples
> R Labs
v R src
> W LiteDRAM
- W Othesources
> R SweRVolfSoC
B verilatorSIM

A& O X[, Boundary Scan / JTAG

B bscanTAP

R jtag_vpi_0-15
R PulpPlatform
B clk_gen_nexys.v
B tb.cpp

W= XtE I 9

A
v W Rvfpga B Makefile
B driversLinux_NexysA7 B packagejson
> M examples B swervolf 0.7.vc
> R Labs
v R src
> W LiteDRAM

> R OtherSources
> W SweRVolfSoC

Al 0| M|, Verilator Simultion

be added to the core ISA to represent the hardware capabilities of the implementation, as
shown in Table 3. For example, RVM is the multiply/divide extension, RVF is the floating-
point extension, and so on.

4. RVFPGA OVERVIEW

In this section we describe the entire RVfpga system from the core up to the FPGA board
interface. Figure 16 illustrates the typical hierarchical organization of an embedded system
starting with the processor core, then the SoC built around the core, and finally the system
and board interface. We start by describing the processor core (Western Digital's SweRV
EH1 Core), which executes the RISC-V instructions; then, in Section B, we describe the
SweRVolf SoC, which integrates the system’s hardware components (core, memory, and
input/output), and the extensions performed for using it within RVfpga; in Section C we
describe the SweRVolf SoC implemented on the Nexys A7 FPGA board (RVfpga) and also
describe the SweRVolf SoC used in simulation (RVfpgaSIM). Finally, we explain the file
structure of the whole RVfpga system in Section D

Table 2. RISC-V base ISAs
(table from https://riscv.org/technical/specifications/)

Base Version | Status

RVWMO | 2.0 Ratified

Ratified

Ratified
Draft
Draft

Table 3. RISC-V standard ISA extensions
(table from https://riscv.org/technical/specifications/)
|"Version | Status
20 |
2.0 Ratified
2.0 Ratified
2.0 Frozen
Ratified
Ratified
Ratified
Ratified
Frozen
Draft

. Figure 16. Embedded System organization

A. SweRV EH1 Core and SweRV EH1 Core Complex

Western Digital developed three RISC-V cores over the past few years: SweRV EH1 (the core used
in RVfpga), SweRV EH2, and SweRV EL2 (future versions of RVfpga may include these cores). Each
core has an Apache 2.0 license. The SweRV EH1 Core is a 32-bit, 2-way superscalar, 9-stage
pipeline core. The SweRY Core EH2 builds on and expands the EH1 Core to add dual threade:
capability for additional performance. The SweRV Core EL2 is a smaller core with moderate
performance. The RISC-V page at https://ww m/company/innovations/risc-v
outlines the three available cores, whose main features are given in Table 4.

Draft
Druft
Draft

Table 4. Main features of the three WD RISC-V Cores
(table. from https terndigital.com/company/innovations/risc-v)
Core Name RISC-V Type Pipeline Stages Threads Size @ TSMC CoreMarks/Mhz

Zam ; Draft

= The letter G, that denotes “general”, is used to denote the inclusion of all MAFD extensions.
Note that a company or an individual may develop proprietary extensions using opcodes that
are guaranteed to be unused in the standard modules. This allows third-party
implementations to be developed in a faster time-to-market

= For example, a 64-bit RISC-V implementation, including all four general ISA extensions plus
Bit Manipulation and User Level Interrupts, is referred to as an RV64GBN ISA. All these
modules are covered in the unprivileged or user specification. The RISC-V foundation also
covers a set of requirements and instructions for privileged operations required for running
general-purpose operating systems

Out of the three cores, the SweRV EH1 Core (provided with the RVfpga package and also
available from https://github.com/chipsalliance/Cores-SweRV) is preferred for its high
performance/MHz and its simple thread structure. Moreover, Chips Alliance, a group
committed to providing open-source hardware, provides a complete and verified SoC, called
SweRVolf (provided with the RYfpga package and also available from
https://qithub.com/chipsalliance/Cores-SweRVolf). RVfpga uses an extension of the
SweRVolf SoC that, in turn, uses Western Digital's SweRV EH1 Core version 1.6

RVfpga
7t0|E, 102 pages

il1. INTRODUCTION

Programming in higher-level languages suc! and Python are efficient for the
programmer. These higher-level languages 2 lated into embly language, which is
a group of simple instructions. Sometimes performance- or timing-critical sections of code
are written in assembly to guarantee specific timing or reduce computation time. This lab
shows you how to create a RISC-V assembly language program that you can run on RVfpga
using PlatformlO. We first give a brief overview of RISC-V assembly and then show how to

Ima Inatlon create and run an assembly program on RVfpga. Then we provide exercises for you to
practice writing your own RISC-V assembly programs.
2. RISC-V Assembly Language Overview
RISC-V assembly language includes simple instructions that are used to |mplpmem higher-

level code. For example, some common RISC-V instructions include the add, sub, and
instructions that add, subtract or multiply two operands.

THE IMAGINATION UNIVERSITY PROGRAMME The bas pes of RISC-V instructions are: computational (arithmetic, logical, and shift)
instructions, memory operations, and branches/jumps. The most common RISC-V
instructions are given in Table 1. Instructions use operands that are located in registers or
memory or that are encoded as a stant (i.e., immediate). RISC-V includes 32 32-bit
registers. Table 2 lists the names of the 32 RISC-V registers. They can be speclflcd by either
their name (for example, 0, 3 , efc.) or their register number (i.e., x0
Programmers typically use rchs(er names which retains some information about the !ypu_a\

The zero register (x0) always contains the value 0 this is a value commonly needed in

purpose of the register. For example, the saved registers, s0-s11, are typically used for
vapg a La b 3 program variables, while the temporary registers, t 6 are used for temporary calculations

programs. The other veg\slers have specific uses as well, as shown in Table 2, but in this lab,

R I S C 'V Assem b Iy La n g u ag e you need only use the register and the temporary and saved registers.
. Table 1. Common RISC-V assembly instructions

| Add
| Subtract

Add immediate

|

TRemavnqer | 1% ‘
ise AND t t t2 |

| Bit-wise OR |
Bit-wise XOR |

| Bit-wise AND immediate 1
Bit-wise OR immedia |

| Bit-wise XOR immediate |
Shift left logical |

| Shift right logical }
| Shift right arithmetic. |
| Shift left logical immediate |
| Shift right logical immediate |
Shift right arithmetic immediate ‘

Computational

BALE WXy
1071 Of| x| Sk

RVfpga Course
Contents

Xilinx Vivade 2019.2 WebPACK Digilent's Naxys A7 / Nexys 4 DDR FPGA Board
PlatformlO — an extension of *Afl 1abs can b td con on; s
Visual Studio Code - 5 recor o ot require

RISC-V CORE & SOC

Core: Western Digital’s SweRV EH1

instruction set simulator (1SS}

All are free except for the FPGA board,

RISC- -

RVfpga Contents

Getting Started Guide
Quick Start Guic
Oven f R tecture and RVipga
PlatformlO, Vivadi
Running RVfpga in Hardware and Simulation

Labs
1-10: Building RVfpga in Vivado, Programming RVfpga, Extending
RVfpga by adding peripherals (released Nov 2020)

11-20: Analyzing and modifying RVfpga’s RISC-V core and memory
system (to be released Q4 2021)

RISC-V*

Supported Platforms

Operating Systems
Ubuntu 18.04 (altho ater versions likely alsc
Windows 10
macOs

RVfpga Course

1-2 Semester Course

Master’s division (Labs 11-20)
Expected Prior Knowledge
tanding of digital design, high-level programming
C), instruction set architecture and assembly programming
or microarchitecture, memory systems (this material is
Digital Design and Computer Architecture
Elsevier, expected publication: sum
expand
RVfpga

RVfpga Software Tools
Xilinx's Vivado IDE

ate bitfile (FPGA configuration file) for RVIpga targeted to Nexys A7 b
PlatformlO — an extension of Visual Studio Code (VSCode)
A7 board

ug C and assembly progran

ard

an HDL (hardware description language) simulator

Extended SweRVolf SoC

How to Get RVfpga

Register for Imagination University
Programme (IUP) — for teachers
researchers, and students worldwide:

Receive updates and notifications of rel
Regquest & download materials

Social Media:
Robert Owen, IUP Director: @
imagination Technologies:
WeChat & Weibo: Ima

Contains Artix-7
programmab

array (F

figure of be

RISC

Lab 4
Function Calls

RVfpga Lab 4: C Libraries

Libraries
llection of commonly used functions
Provided so that common functions are readily available (save
programming time)
Example C libraries:
math.h (math library): includes functions such as sqrt (square root), cos
(cosine), etc
stdio.h (standard /O library): includes functions for printing values to the
screen (printf), reading values from user:
stdlib.h (standard library): includes fu s fo erating random
numbers (rand).

QT imagination

RVfpga Lab 4: The Stack

Scratch space in memory used to save register values

The stack pointer (=p) holds the address of the top of the stack
The stack grows downward in memory. So, for example, to make
space for 4 words (16 bytes) on the stack the following code is used

Two categories of registers:
Preserved registers: reg
ontain the e b

Non-preserved register

RVfpga Lab 4: Function Calls

Write C programs with function calls
Functions are also called procedures

Using C libraries

RISC-V (Procedure) Calling Convention

RVfpga Lab 4: Example Program with Functions

RVfpga Lab 4: RISC-V Calling Convention

Call a function
al f tion 1 1
Return from a function
Arguments
placed in registers a0-a7
Return value
placed in register a

4 RISC

RVfpga Lab 4: The Stack — Revised Assembly Code

C Code RISC-V Assembly

RVfpga Lab 4: Example Program with Functions

C and Assembly

Qdimagination

.
o

==
o/
10
= Al

A EL

https://university.imgtec.com/
https://university.imgtec.com/teaching-download

o 0

ks

. - - -
> N
N 3
N -
N \
N -
————— O\
~.\§:
L
3
-

N

- . 1% _ q.. _._ .\\\ .
| 1 52 Jio Pro ‘mh: ; (17 ¢
i \\\.ﬁ RilE i
o
¥

74

7
s
SIS
S —

s

<

‘.=/
%

e -

’
Ll _
1Inl

e il i
e ol 6 ! |
. e " (s 1% llo] @
] \ 5 Ve J -

j e, |
NS W/A/v |
. A 11

te

iversity.img

M A
//universi

oL
AN
7
https:

