An Introduction to Intel Memory
Management

Jeremy Pierre
jeremy@0x90.org

=\ ==2

An Introduction to Intel Memory Management

1 Introduction

This document exists to give a basic overview of how memory is managed
by Intel processors running in 32 bit protected mode. It is not intended to
explain how one would bootstrap an operating system or anything else of
the sort. Readers are encouraged to read the texts given in the bibliography
as these can greatly further your understanding of how processors operate
on the lowest levels. From here on, assume that we are discussing memory
specifically from a protected mode point of view. Any addresses given will
be in hexadecimal, preceded by the conventional Ox prefix.

Memory on an Intel compatible processor is managed on three levels.
From bottom to top they are:

e Physical
e Linear (paging)
e Logical (segmentation)

A program never actually operates directly on the linear or physical levels,
although you will see that it is possible to give this illusion. The linear
address space is typically handled by the paging mechanism. The paging
facilities on the processor allow us to remap physical memory to suit the
needs of the program running. Logical addressing, or segmentation, allows
us to separate different aspects of the program from each other, such as
the program code itself and the stack.

The majority of this document will focus on how segmentation and pag-
ing mechanisms relate to each other and create an address space ! for a
program to operate within. Protection mechanisms themselves will not be
discussed in much detail. Readers interested in learning more about the
protection facilities on Intel processors should refer to the materials listed
in the bibliography.

2 Physical Memory
Physical memory is the most basic address space on Intel processors and

is actually never seen directly by programs. Essentially, byte 0x0 is the
first byte in RAM. Naturally then, the byte addressed by the index value

L Address Space refers to a specific range of memory that a program(or process) has
access to read from and/or write to.

B2

0x10FB359 is located at location 0x10FB359 in RAM. There is no form of
translation or mapping at the physical memory level.

3 Linear Memory

Linear memory, also known as virtual memory, looks very much like phys-
ical memory, except that we can remap sections differently by means of
the paging mechanism. Paging, for example, will allow us to make location
0x0 actually map to location 0x1000. As you can imagine, if we are not
careful, memory will start to look like a bad jigsaw puzzle. The following
figure illustrates a small example of a paged area of memory. Each box in
the figure represents a single 4k page of memory(default page size). The
addresses listed above the boxes are the linear addresses(what the program
sees) while the addresses inside the boxes represent the physical address of
each page, or the actual address in RAM of the page.

0x0000 0x1000 0x2000 0x3000 0x4000 0x5000
0x1000 0x8000 0x2000 0x12000 0x0000 0x302000
Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

As you can see, paging allows us to represent portions of physical memory
any we want to. For example, even though Page 5 actually is stored at
location 0x0 in physical memory, as far as our program is concerned physical
address 0x1000 comes first because it is mapped to address 0x0.

Paging on the Intel processors is handled by two control structures, the
Page Directory, and Page Tables. Both structures occupy exactly 4k of
space in memory. The Page Directory is basically an array of pointers to
each Page Table. Each entry in the directory contains the base physical
address of the table it points to. The directory entries also allow us to con-
trol attributes such as read and write access to entire Page Tables and the
pages the tables point to. The Page Tables are almost identical in appear-
ance to the directories, except that each entry points to the base address
of a single page. If we wanted to, instead of controlling the attributes of
memory at the directory level, we can accomplish it on a page by page
basis. The following figure is a basic representation of a Page Directory

An Introduction to Intel Memory Management

pointing to a Page Table which points to several individual pages.

Directory Table Linear Memory
-
— | oxt000 0x1000
-
0x8000 0x2000
-
0x2000 0x3000

The addresses in the table entries are the physical base addresses of each
page being pointed to, where the addresses listed in linear memory are
what software will see. The maximum amount of memory we can address
with a full Page Directory and full Page Tables under it totals 4 gigabytes,
assuming we are using the default page size of 4k 2.

Now for the location of Page Directories. The CR3 control register points
to the physical base of a Page Directory. This register is also known as the
Page Directory Base Register(PDBR). Since the CR3 register is changed
upon a hardware context switch , we can actually create completely dif-
ferent linear memory maps for different programs running simultaneously.

4 Logical Memory

Logical addressing using segmentation has been common on Intel proces-
sors almost from the beginning. To date, there is no way to operate an

2There are extensions to the paging hardware on a number of processors since the
Pentium that allow 2 and 4 megabyte pages as well as an address space up to 64 giga-
bytes. See the bibliography for further documentation on which processors support this
as well as specifics of operation.

3A context switch, or task switch is when control of the processor changes to a
different piece of software(multitasking/multiprocessing).

B2

Intel compatible processor without segmentation, we cannot turn it off as
is possible with the paging mechanism. Originally, a segment was always
64k in size, and to address memory one needed to supply a two part ad-
dress composed of two words(16 bit values) separated by a colon such as
0xDEAD:BEEF. The first word is called the segment selector. The second
word is called the offset. So 0x0:1000 refers to the first segment in memory,
at an offset of 0x1000. The problem comes when you try to access memory
location 0x0:10000, as this is an offset bigger than 64k.

Since the 80386 processor, we have had a much more flexible imple-
mentation of segmentation. A segment can be any size needed, up to the
addressable limit of 4 gigabytes. Much like there are tables to keep track
of our linear memory pages, there are table structures to keep track of our
logical segments of memory. Two types of tables exist:

e Global Descriptor Table(GDT)
e Local Descriptor Table(LDT)

Each processor must have one and only one Global Descriptor Table(GDT)
and it cannot be larger than 64k. The upside is that we can have one Local
Descriptor Table per process so that each process on our computer can
have its very own logical memory address space, just as each process can
have its own linear address space.

Our GDT looks almost exactly like any LDT with one exception: the
first entry in the GDT must always be filled with zeros. This is for several
purposes such as debugging, access checks and so on. In any given LDT, the
entry 0 can be anything we want. The GDT and LDT’s contain segment
descriptors that allow us to arbitrarily define the base address, size and
attributes of a segment for use by a process. The following figure illustrates
a few segment descriptors pointing to arbitrary linear memory locations.

0x0 Linear Memory 4 gigabytes

LDT1234

Logical Memory

An Introduction to Intel Memory Management

The empty boxes of linear memory represent arbitrarily sized segments.
The LDT boxes are individual segment descriptors. The numbers inside
the segment descriptors are called segment selectors. Specifying a logical
address is the same as it was 20 years ago, except the offset could be just
about anything. For example, if segment 1 had a size(or "limit”) of 2
megabytes, the logical address 0x0001:00040558 is perfectly legitimate.

Our previous example is just fine, except that the supplied segment se-
lectors are completely incorrect. Segment selectors are still 16 bits long
just as they were 20 years ago. The difference is that now we use the first
three bits of a selector for some extra information like priviledge levels and
indicating which table to use. Priviledge levels are beyond the scope of this
text, but the table inicator bit is important. The following figure illustrates
two segment selectors at the binary level.

15 2 10
LDT Index 1

15 2 10
GDT Index 0

The grayed out areas in the selectors are a Requested Priviledge Level
field occupying 2 bits of space in the selector. The Index section is simply
an index into the descriptor table containing the segment descriptor for
the selector. The main difference between these two selectors is bit 2, the
Table Indicator(TTI) bit. When set, the selector is for a segment contained
in the current Local Descriptor Table. When cleared, the selector indexes
a segment in the GDT.

5 Combining Segmentation and Paging

Now that we have covered logical and linear addressing, it is time to put
them back together. Quite simply, a logical address consisting of a seg-
ment selector and an offset is translated into linear address for the paging
mechanism. The Paging mechanism then translates the linear address into
a physical address and your memory access completes itself.

B2

For an example, let us consider a segment with a base address of 0x0
and a limit of 1 megabyte, or 0x100000. The following figure illustrates
the translation from logical to linear to physical address assuming we are
looking for address 0x0004:1000. Note that our segment selector has bit 2
set with an index value of 0. This indicates that we are looking for the first
segment in a Local Descriptor Table.

LDT Directory Table Linear Physical

0x0000 — Paging—| 0x0000 \ 0x200000 Page 1

0x504000 0x301000 Page 2 \

0x301000

Our LDT descriptor 0x0000 points to a base address of 0x0. The paging
mechanism translates this and passes us along to the Page Directory. Since
we are operating within the first 4 megabytes of address space it forwards
us to the first page table. The offset we supplied is the first byte in the
second page, so the translation passes us along the chain through linear
memory and on to our physical address of 0x301000. A few details were
missed along the way, but that is basically what happens.

5.1 Simulating a Flat Address Space

We will end this introduction to memory management with an example of a
simulated flat address space, such as the one that Linux implements. A flat
address space is basically a uniform memory region used for both code and
data with no logical seperation defined between the two areas. As a code
segment cannot be written to, we cannot simply discard the data segment
altogether. Since a data segment disallows code execution, we cannot be
rid of the code segment.

The simple solution adopted by the Linux operating system is to have one
code segment descriptor in the GDT that spans a full three gigabyte mem-
ory region. Also housed in the Global Descriptor Table is a data segment
descriptor that overlaps the exact same three gigabytes of memory. Since
each process can have its own Page Directory Base Register value, each

An Introduction to Intel Memory Management

process can use exactly the same logical address space for every operation,
but maintain separate linear memory regions to avoid tampering.

References

[1] Intel Architecture Software Developer’s Manual, Intel Corporation

[2] Hans-Peter Messmer: The Indispensable PC Hardware Book,
Addison-Wesley, 2002

B2

