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Building ARM code
• To use the ARM C compiler:

armcc -c code.c tcc –c thumb.c
armcc S code carmcc -S code.c

• ARM assembler:
armasm -g code.s

• To build a library
armar -r test.lib test1.o test2.o test3.o
armar -t test.lib // display archived objects

• The object code can then be linked to produce an executable:
armlink code o -o codearmlink code.o -o code

.c .s elf bin

w/ symbol



Preprocess (-E option)
• arm –E test1.c > test1.i

• To prevent multiple #include• To prevent multiple #include
#ifndef __TEST1_H__
#define __TEST1_H__
...
#endif



Variables
• local

– valid within the function or block {}
• global

int a = 0x10;
void funcA (void)
{
int a1 = 3;
i t b1 4global

– valid within a file
– can be used by other files

int b1 = 4;
......
return;

}

• static
– local static: retain its value
– global static: protected from other files

char b = 0x20;
void funcB (void)
{
.......
return;global static: protected from other files

• volatile
return;

}

static int d 0x10;static int d = 0x10;

void func(void)
{
static int a = 3;
static int b = 4;

a++;
b++;

return;
}



Symbol

Symbol
function
global variable
static variable

.text

.constdata

.bss
RO
ZIstatic variable .bss

.data
ZI
RW

int x1 = 5; // in .data 
int y1[100]; // in .bss 
int const z1[3] = {1,2,3}; // in .constdata 

z2[5], z3 ZI-stack

char *s3 = "abc"; // s3 in .data, "abc" in .constdata

int main(int x) // in .text
{

y1[100], x2

z3

ZI

ZI-heap

static int x2; // in .bss 
static int y2 = 10; // in .data
char z2[5]; // stack
char z3; // stack z1, “abc”

x1,s3,y2

RO

RW

z3 = (char *)malloc(suzeof(char)*200); // heap
} 

main RO



ELF
armcc –c test1.c test2.c
armlink –o final.elf test1.o test2.o
fromelf --bin -o outfile.bin infile.axf // convert elf to binary file (w/o symbol)
fromelf -c infile.axf // disassemble
fromelf -c -s -o outfile.lst infile.axf // disassemble & symbol table

axf: DWARF2.0 elf format



Executable Image

fromelf --bin -o outfile bin file1 o file2 ofromelf --bin -o outfile.bin file1.o file2.o



Linker
• Input section can have the attributes RO, RW, or ZI. 
• armlink groups input sections into bigger building blocks called 

output sections and regions.output sections and regions.
• An output section is a contiguous sequence of input sections that 

have the same RO, RW, or ZI attributes.
• A region is a contiguous sequence of one to three output sections.
• A region typically maps onto a physical memory device, such as 

ROM, RAM, or peripheral.ROM, RAM, or peripheral.



Load view and execution view
• Load view 

– Describes each image region and section in terms of the address it is 
located at when the image is loaded into memory, that is, the g y
location before the image starts executing.

• Execution view 
– Describes each image region and section in terms of the address it is– Describes each image region and section in terms of the address it is 

located at while the image is executing.

XIP

armlink --ro-base 0x0 --rw-base 0x8000



Scatter Loading
bl t if th f i t th li k i• enables to specify the memory map of an image to the linker using a 

description in a text file.  (armlink --scatter *.scl)
• gives complete control over the grouping and placement of image 

tcomponents. 
• When to use scatter-loading

– Complex memory maps
• Code and data that must be placed into many distinct areas of 

memory require detailed instructions on which section goes into which 
memory space.

– Different types of memory– Different types of memory
• Many systems contain a variety of physical memory devices such as 

flash, ROM, SDRAM, and fast SRAM. A scatter-loading description can 
match the code and data with the most appropriate type of memory. pp p yp y
For example, interrupt code might be placed into fast SRAM to 
improve interrupt response time but infrequently used configuration 
information might be placed into slower flash memory.

Memory mapped I/O– Memory-mapped I/O
• The scatter-loading description can place a data section at a precise 

address in the memory map so that memory mapped peripherals can 
be accessed.



Scatter Loading

root region



Scatter Loading



Overlay
f• Use the OVERLAY attribute in a scatter-loading description file to place 

multiple execution regions at the same address. 

• An overlay manager is required to make sure that only one execution region 
is instantiated at a time. 

• A region marked as OVERLAY is not initialized by the C library at startup. 

• The contents of the memory used by the overlay region are the responsibilityThe contents of the memory used by the overlay region are the responsibility 
of the overlay manager, which must copy any Code and Data, and initialize 
any ZI when it instantiates a region.



Accessing linker-defined symbols
• Region-related symbols

Symbol Description

Load$$region_name$$Base Load address of the region

Image$$region_name$$Base Execution address of the region

Image$$region name$$Length Execution region length in bytes (multiple of 4)Image$$region_name$$Length Execution region length in bytes (multiple of 4)

Image$$region_name$$Limit Address of the byte beyond the end of the execution region

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes (multiple of 4)

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section 
in the execution regionin the execution region

LDR r0, =||Image$$region_name$$ZI$$Limit||



Accessing linker-defined symbols
• Section-related symbols



Accessing linker-defined symbols

extern byte *Image__SRAM__Base;
extern byte *Image__SRAM__Length;
extern byte *Load__SRAM__Base;
extern byte *Image SRAM ZI Base;extern byte *Image__SRAM__ZI__Base;
extern byte *Image__SRAM__ZI__Length;

end_point = (dword *) ( (dword) Image__SRAM__Base + (dword) Image__SRAM__Length); 

Load__SRAM__Base 
DCD |Load$$SRAM$$Base|

for( src = (dword *) Load__SRAM__Base, 
dst = (dword *) Image__SRAM__Base; 

dst < end_point;
src++ dst++ ) | $$ $$ |

Image__SRAM__Base 
DCD |Image$$SRAM$$Base|

src++, dst++ ) 
{

*dst = *src;
}

Image__SRAM__Length 
DCD |Image$$SRAM$$Length|

Image__SRAM__ZI__Base g
DCD |Image$$SRAM$$ZI$$Base| 

Image__SRAM__ZI__Length 
DCD |Image$$SRAM$$ZI$$Length|| g g |



Application Start



Reset and Initialization Sequence



ROM/RAM Remapping



Stack Pointer Initialization

set by C lib init code



__user_initial_stackheap

STACK
SB

0x40000

HEAP

0x28080000
HL

HEAP

STACK
SB
HB

0x40000

0x28000000

HEAP

HB
0x20000

STACK



The Structure of an Assembler Module

Chunks of code or data manipulated by the linker attributes

AREA Example, CODE, READONLY ; name of code block
ENTRY ; 1st exec. instruction

start
First 

i t ti start
MOV r0, #15 ; set up parameters
MOV r1, #20

instruction 
to be 

executed

BL func ; call subroutine
SWI 0x11 ; terminate program

func ; the subroutinefunc ; the subroutine
ADD r0, r0, r1 ; r0 = r0 + r1
MOV pc, lr ; return from subroutine

; result in r0
END ; end of code



A Simple Program
void hello () CODE32void hello ()
{

char *data;
t h t t[] "H ll

CODE32
AREA ||.text||, CODE, READONLY

hello PROC
|L1.0|

STMFD sp! {r1-r3 lr}const char text[]="Hello 
world“;

data = (char *)text;
printf (" %s " data);

STMFD sp!,{r1 r3,lr}
MOV r0,sp
MOV r2,#0xc
LDR r1,|L1.36|
BL rt memcpyprintf (  %s , data);

return;
}

BL __rt_memcpy
MOV r1,sp
ADR r0,|L1.40|
BL _printf
LDMFD sp! {r1-r3 pc}LDMFD sp!,{r1 r3,pc}

|L1.36|
DCD ||.constdata$1||

|L1.40|
DCB " %s "armcc -o helloworld s -S helloworld c DCB  %s 
DCB "₩0₩0₩0₩0"
ENDP

AREA || constdata|| DATA READONLY ALIGN=0

armcc o helloworld.s S helloworld.c

AREA ||.constdata||, DATA, READONLY, ALIGN=0
||.constdata$1||

DCB 0x48,0x65,0x6c,0x6c
DCB 0x6f,0x20,0x77,0x6f
DCB 0x72 0x6c 0x64 0x00DCB 0x72,0x6c,0x64,0x00

END



Inline Assembly
• For multiple instructions on the same line, 

separate them with a semicolon (;). 
• Register names in the inline assembler areRegister names in the inline assembler are 

treated as C variables. They do not necessarily 
relate to the physical register of the same 
name If you do not declare the register as a C

int f(int x) 
{ 

int r0; name. If you do not declare the register as a C 
variable, the compiler generates a warning.

• In Thumb mode, only r0-r7

;
__asm 
{ 

ADD r0, x, 1 
EOR x, r0, x 

• Do not save and restore registers in inline 
assembler. The compiler does this for you. 

• If registers other than CPSR and SPSR are

, ,
} 
return x; 

}

• If registers other than CPSR and SPSR are 
read without being written to, an error message 
is issued.

• BL, BLX cannot be used.
• cannot use pseudo instruction such as LDR



ARM Procedure Call Standard (APCS)
• defines:

– restrictions on the use of registers
– conventions for using the stackconventions for using the stack
– passing/returning arguments between function calls
– the format of a stack-based structure which may be 'backtraced' to provide a 

list of functions (and parameters given) from the failure point backwards tolist of functions (and parameters given) from the failure point backwards to 
the program entry

– Compiler option : -apcs



ARM Procedure Call Standard (APCS)
• Parameter Passing

– Passing arguments: core registers (r0-r3) and on the stack
– For subroutines that take a small number of parameters, only registers areFor subroutines that take a small number of parameters, only registers are 

used.
– Passing argument for long long type: pair of consecutive argument registers 

(e g r0 and r1)(e.g., r0 and r1)
• Return value

– Integer or pointer: r0
– Two-word: r0 and r1



ARM Procedure Call Standard (APCS)
• Stack

– Linked list of 'frames' which are linked through what is known as a 
'backtrace structure‘

– Stored at the high end of each frame
– Allocated in descending address order

The register sp– The register sp 
• Point to the lowest used address in the most recent frame.

• Backtrace
– The register fp (frame pointer) should be zero, or it should point to the last in 

a list of stack backtrace structures which will provide a means of 'unwinding' 
the program to trace backwards through the functions called



ARM Procedure Call Standard (APCS)



ARM Procedure Call Standard (APCS)



Outline of This Lecture
• Profiling

– Amdahl’s Law
The 80/20 rule– The 80/20 rule

– Profiling in the ARM environment

• Improving program performance
– Standard compiler optimizations
– Aggressive compiler optimizations
– Architectural code optimizations



Profiling and Benchmark Analysis 
• Problem: You're given a program's source code (which someone else 

wrote) and asked to improve its performance by at least 20% 

• Where do you begin? 
– Look  at source code and try to find inefficient C code 
– Try rewriting some of it in assembly 
– Rewrite using a different algorithm

(R d ti f th d ) ☺– (Remove random portions of the code)  ☺



Gene Amdahl

• One of the original architects of 
the IBM 360 mainframe series

• Founded four companies
– Amdahl CorporationAmdahl Corporation
– Trilogy Systems (Part of Elxsi)
– Andor Systems

C i l D t S (CDS)– Commercial Data Servers (CDS)

• A relatively few sequential y q
instructions might have a limiting 
factor on program speedup such 
that adding more processors maythat adding more processors may 
not make the program run faster.



Amdahl’s Law



Profiling and Benchmark Analysis (cont’d) 
• Most important question ... 

– Where is the program spending most of its time? 

• Amdahl's Law
– The performance improvement gained from using some faster mode of 

ti i li it d b th f ti f th t t l ti th f t d bexecution is limited by the fraction of the total time the faster mode can be 
used 

• Example: 

Optimizable
2 S d

p
2x Speedup

Unoptimizable Unoptimizable



Profiling and Benchmark Analysis (cont’d) 
• How do we figure out where a program is spending its time? 

If we could count every static instruction we would know which– If we could count every static instruction, we would know which 
routines (functions) were the biggest 
• Big deal, large functions that aren't executed often don't really 

matter 

– If we could count every dynamic instruction we would know which– If we could count every dynamic instruction, we would know which 
routines executed the most instructions 
• Excellent! It tells us the “relative importance” of each function 
• But doesn't account for memory system (stalls) 

If e co ld co nt ho man c cles ere spent in each ro tine e– If we could count how many cycles were spent in each routine, we 
would know which routines took the most amount of time



Profiling
• Profiling: collecting statistics from example executions 

– Very useful for estimating importance of each routine 
Common profiling approaches:– Common profiling approaches:
• Instrument all procedure call/return points (expensive: e.g., 20% overhead) 
• Sampling PC every X milliseconds -- so long as program run is significantly 

l h h li i d h f fili i dlonger than the sampling period, the accuracy of profiling is pretty good 
– Usually results in output such as 

Routine % of Execution Time
function_a 60% 
function_b 27% 
function_c 4% 
... 

function_zzz 0.01%

– Often over 80% of the time spent in less than 20% of the code (80/20 rule)
– Can now do more accurate profiling with on-chip counters and analysis tools

• Alpha, Pentium, Pentium Pro, PowerPC 
• DEC Atom analysis tool y
• Both are covered in Advanced Computer Architecture courses 





Timing execution with armsd

• The simulator simulates every cycle 
– Can gather very accurate timings for each function g y g

• Run the simulator to determine total time 

• Compiler can optimize for speed 
prompt> armcc -Otime -o sort sorts.c p p

• Can also optimize for size
prompt> armcc -Ospace -o sort sorts.c

• Re-run the simulator to determine new total time 
– new time is 2,059,629 μsecs -- an improvement of 4.5% (compared to -g)



Profiling with armsd
• No compile-time options needed 

• Run the simulator to profile capturing callgraph data• Run the simulator to profile, capturing callgraph data 
prompt> armsd 
armsd: load/callgraph sorts 
armsd: ProfOn 
armsd: go 
armsd: ProfWrite sorts.prf instructs armprof to include information 

about the callers of each functionp
armsd: quit 

prompt> armprof -Parent sorts.prf > profile

about the callers of each function

• To profile for only samples, skip the “/callgraph” portion 
– avoids the 20% overhead (in this example)( p )



armprof output time spent in children of 
the current function 

time spent in 
this function 

Name cum% self% desc% calls 
main 96.4% 0.16% 95.88% 0 

qsort 0.44% 0.75% 1qsort 0.44% 0.75% 1 
_printf 0.00% 0.00% 3 
clock 0.00% 0.00% 6 
sprintf 0 34% 3 56% 1000_sprintf 0.34% 3.56% 1000 
randomise 0.12% 0.69% 1 
hell_sort 1.59% 3.43% 1 
insert sort 19 91% 59 44% 1insert_sort 19.91% 59.44% 1 

---------------------------------------------------------------
main 19.91% 59.44% 1 
insert sort 79 35% 19 91% 59 44% 1insert_sort 79.35% 19.91% 59.44% 1 
strcmp 59.44% 0.00% 243432 
---------------------------------------------------------------

t i 3 17% 0 00% 13021qs_string_compare 3.17% 0.00% 13021 
shell_sort 3.43% 0.00% 14059 
insert_sort 59.44% 0.00% 243432 
t 66 05% 66 05% 0 00% 270512strcmp 66.05% 66.05% 0.00% 270512 



Optimizing “sorts”
• Almost 60% of time spent in strcmp called by insert_sort
• strcmp compares two strings and returns int 

– 0 if equal negative if first is ``less than'' second positive otherwise0 if equal, negative if first is less than  second, positive otherwise 
• Replace “strcmp(a,b)” call with some initial compares 

if (a[0] < b[0]) { 
result is neg g

} 
if (a[0] == b[0]) { 

if (a[1] < b[1]) { 
result is negresult is neg 

} 
if (a[1] == b[1]) { 

if (strcmp(a,b) <= 0) { 
result is neg or zeroresult is neg or zero 

} 
} 

} 

• Result of this change is 20% reduction in execution time 
– Avoids some procedure call overheads (in-lining) 
– Avoids some loop control overheads (loop unrolling) 
– Handles common cases efficiently and other cases correctly 



Improving Program Performance 
• Compiler writers try to apply several standard optimizations 

– Do not always succeed 

• Compiler writers sometimes apply aggressive optimizations 
– Often not “informed” enough to know that change will help rather than hurt 

• Optimizations based on specific architecture/implementation 
characteristics can be very helpful y p

– Much harder for compiler writers because it requires multiple, generally very 
different, “back-end” implementations 

• How can one help? 
– Better code, algorithms and data structures (of course) 
– Re-organize code to help compiler find opportunities for improvement 
– Replace poorly optimized code with assembly code (i.e., bypass compiler)



Standard Compiler Optimizations 
• Common Sub-expression Elimination 

– Formally, “An occurrence of an expression E is called a common sub-
expression if E was previously computed, and the values of variables in E 
have not changed since the previous computation.”

– You can avoid re-computing the expression if we can use the previously 
computed one. p

– Benefit: less code to be executed 

b: 
t6 = 4* i 
x  = a[t6] 

b: 
t6 = 4 * i
x  = a[t6] 

t8 = 4 * j 
t9 = a[t8] 
a[t6] = t9 
a[t8] = x

t7 = 4 * i
t8 = 4 * j
t9 = a[t8] 
a[t7] = t9

Before After

a[t8] = x 
goto b

a[t7]  = t9 
t10    = 4 * j
a[t10] = x 
goto b



Standard Compiler Optimizations
• Dead-Code Elimination

– If code is definitely not going to be executed during any run of a program, 
then it is called dead code and can be removed. 

– Example: 
debug = 0; 
... 
if (debug){ 

print ..... 
}}

– You can help by using ASSERTs and #ifdefs to tell the compiler about 
dead code 

• It is often difficult for the compiler to identify dead code itself• It is often difficult for the compiler to identify dead code itself



Standard Compiler Optimizations (con't) 
I d i V i bl d S h R d i• Induction Variables and Strength Reduction 
– A variable X is called an induction variable of a loop L if every time the 

variable X changed value, it is incremented or decremented by some 
t tconstant 

– When there are 2 or more induction variables in a loop, it may be possible to 
get rid of all but one 
It is also freq entl possible to perform strength red ction on ind ction– It is also frequently possible to perform strength reduction on induction 
variables 
• the strength of an instruction corresponds to its execution cost 

Benefit: fewer and less expensive operations– Benefit: fewer and less expensive operations 

t4 = 0t4 = 0 t4  0 
label_XXX

t4 += 4 
t5 = a[t4] 
if (t5 > v) goto label XXX

label_XXX
j = j + 1 
t4 = 4 * j 
t5 = a[t4] 

Before After

if (t5 > v) goto label_XXX
if (t5 > v) goto label_XXX



Aggressive Compiler Optimizations 
I li i f f ti• In-lining of functions 
– Replacing a call to a function with the function's code is called “in-lining”
– Benefit: reduction in procedure call overheads and opportunity for additional code 

optimizations 
– Danger: code bloat and negative instruction cache effects 
– Appropriate when small and/or called from a small number of sitesAppropriate when small and/or called from a small number of sites 

ADD  r5, r4, #4 
SWI  0x11

MOV r0, r4      ; r4 --> r0 (param 1)
MOV r1, #4      ; 4  --> r1 (param 2)
BL c add ; call c addBL c_add       ; call c_add
MOV r5, r0      ; r0 (result) --> r5
SWI 0x11        ; terminate

c_add 
MOV r12, r13    ; save sp
STMDB r13!, {r0,r1,r11,r12,r14,pc} ; save regs
SUB r11, r12, #4  ; (sp - 4) --> r11
MOV r2, r0 ; param 1 --> r2MOV r2, r0      ; param 1 > r2
ADD r3, r2, r1  ; param 1 + param 2 --> r3
MOV r0, r3      ; move result to r0
LDMDB r11, {r11, r13, pc} ; restore regs

Before                                                          After



Aggressive Compiler Optimizations (2)
L U lli• Loop Unrolling
– Doing multiple iterations of work in each iteration is called “loop unrolling”
– Benefit: reduction in looping overheads and opportunity for more code opts. 
– Danger: code bloat, negative instruction cache effects, and non-integral loop div. 
– Appropriate when small and/or called from small number of sites 

Bit-counting loop Unrolled bit-counting loop

int countbit1(unsigned int n) int countbit2(unsigned int n) 

Bit-counting loop Unrolled bit-counting loop

countbit1 PROC
MOV r1, #0
B |L1 20|

countbit2 PROC
MOV r1, r0
MOV 0 #0{ 

int bits = 0; 
while (n != 0) 
{ 

if (n & 1) bits++; 

{
int bits = 0;
while (n != 0)
{

if (n & 1) bits++;

B |L1.20|
|L1.8|

TST r0, #1
ADDNE r1, r1, #1
LSR r0, r0, #1

MOV r0, #0
B |L1.48| 

|L1.12|
TST r1, #1
ADDNE r0, r0, #1( ) ;

n >>= 1; 
} 
return bits; 

} 

( ) ;
if (n & 2) bits++;
if (n & 4) bits++;
if (n & 8) bits++;
n >>= 4;

}

|L1.20|
CMP r0, #0
BNE |L1.8|
MOV r0, r1
BX lr

TST r1, #2
ADDNE r0, r0, #1
TST r1, #4
ADDNE r0, r0, #1
TST r1, #8}

return bits;
} 

BX lr
ENDP 

TST r1, #8
ADDNE r0, r0, #1
LSR r1, r1, #4

|L1.48|
CMP r1, #0
BNE |L1 12|BNE |L1.12|
BX lr ENDP 




