Embedded System Design

Building ARM code

To use the ARM C compiler:

armcc -c code.c tcc —c thumb.c

armcc -S code.c

ARM assembler:

armasm -g code.s

To build a library

armar -r test.lib testl.o test2.0 test3.0

armar -t test.lib // display archived objects

The object code can then be linked to produce an executable:
armlink code.o -0 code

w/ symbol

Preprocess (-E option)

e arm -E testl.c > testl.i

e To prevent multiple #include
#ifndef TEST1 H
#define TEST1 H

#endif

Variables

° |Oca| int_a = 0x10; _
— valid within the function or block {} g funeh (ol
intal = 3;
* global int bl = 4;
— valid withinafile | o _
return;
— can be used by other files }
e Static char b = 0x20;
. L void funcB (void)
— local static: retain its value {
— global static: protected from other files return:
e volatile)

static int d = 0x10;

void func(void)

{
static int a = 3;
static int b = 4;

a++;
b++;

return;

¥

Symbol

function > .text
Symbol < global variable } .constdata } — RO
static variable | L4 .bss > 7|
.data > RW
int x1 = 5; // in .data
int y1[100]; /1 in .bss z2[5], z3
int const z1[3] = {1,2,3}; // in .constdata
char *s3 = "abc"; // s3 in .data, "abc" in .constdata 73
int main(int x) /1 in .text y1[100], X2
{]
static int x2; // in .bss
static int y2 = 10; // in .data x1,53,y2
char z2[5], // stack L
char z3; // stack z1, "abc
z3 = (char *)malloc(suzeof(char)*200); // heap main
¥

ZIl-stack

Zl-heap

ZI
RW
RO
RO

ELF

armcc —c testl.c test2.c

armlink —o final.elf testl.o test2.0

fromelf --bin -o outfile.bin infile.axf // convert elf to binary file (w/o symbol)
fromelf -c infile.axf /1 disassemble

fromelf -c -s -0 outfile.Ist infile.axf // disassemble & symbol table

axf: DWARF2.0 elf format

Linking View

ELF Header

Program Header Table
(Optional)

Execution View

ELF Header

Section 1

ELF Header

Program Header Table

Program Header Table

Text segment

Section n

Segment 1

Data segment

BSS segment

Section Header Table

Segment 2

".symtab" section

".strtab" section

" shstrtab" section

Section Header Table
(Optional)

Debug sections

Section Header Table

Executable Image

Executable Image

FIIE I,ﬂ Fa

“loader” section
codeldata

“Yoader® section

Fodefdam (file 1.0)

tert section

A J

Jtext section

[code —

datea section

date S

Jbsg section

date
4L

text (file 1.0)

gdext (file 2.0)

my _section (file 2.0

=

Hate section

deta (file 1.0)

| dota (file 2.0)

Jbes zection

bss (file I.0)

file 2,0

Jgext section

I‘Sﬂdﬂ

“my section”

eode

date section

data

Jbss section
data

bss (File 2.0)

fromelf --bin -0 outfile.bin filel.o file2.0

Linker

e Input section can have the attributes RO, RW, or ZI.

e armlink groups input sections into bigger building blocks called
output sections and regions.

e An output section is a contiguous sequence of input sections that
have the same RO, RW, or ZI attributes.

e A region is a contiguous sequence of one to three output sections.

e A region typically maps onto a physical memory device, such as
ROM, RAM, or peripheral.

‘| Input section 1.1.1

Input section 1.1.2

Output section 1.1 |~ Input section 1.2.1

Output section 1.2

Region 1

Output section 1.3

Input section 1.3.1

Input section 1.3.2

; Input section 2.1.1
Region 2 Output section 2.1

Input section 2.1.2

Input section 2.1.2

Memory

Load view and execution view

e Load view

— Describes each image region and section in terms of the address it is
located at when the image is loaded into memory, that is, the
location before the image starts executing.

e EXxecution view

— Describes each image region and section in terms of the address it is
located at while the image is executing.

Load view Execution view
OXOFFFF
Memory initialized
to zero \
Z| section
RAM 0x0AQ00
RW section
0x08 L
RW section
ROM ___ bxee000 __ _ _ _
RO section RO section
___ 0x00000 ___ __ XIP

armlink --ro-base 0x0 --rw-base 0x8000

Scatter Loading

enables to specify the memory map of an image to the linker using a
description in a text file. (armlink --scatter *.scl)

gives complete control over the grouping and placement of image
components.

When to use scatter-loading
— Complex memory maps

e Code and data that must be placed into many distinct areas of
memory require detailed instructions on which section goes into which
memory space.

— Different types of memory

e Many systems contain a variety of physical memory devices such as
flash, ROM, SDRAM, and fast SRAM. A scatter-loading description can
match the code and data with the most appropriate type of memory.
For example, interrupt code might be placed into fast SRAM to
Improve interrupt response time but infrequently used configuration
information might be placed into slower flash memory.

— Memory-mapped 1/0

e The scatter-loading description can place a data section at a precise
address in the memory map so that memory mapped peripherals can
be accessed.

Scatter Loading

Start address for

Name of load region
load region Maximum size of
\ load region
/ Start address for
Name of first LOAD ROM @x@@@@ ®x8®®® exec region

X

exec region

exec region \

Maximum size of this

EXEC ROM 0x0000 0x8000 <€—

Name of second # (+RO)"'""“---———-________ Place all code and
exec region RO data into this
exec region

RAM,0x10000 0x6000_

™ Maximum size of

Place all RW and ZI data

0x16000

SRAM
0x10000

ROM

Start of second < (+RW,+7T) this exec region
exec region
into this exec region
Load view Execution view
Zero fill —» Zl section
//. RW section
Copy / decompress
RW secton | —]
RO section > RO section

root region

Scatter Loading

L, — Scatter description

LOAD_ROM_1 0x0000 - Load region description

\

|~ Execution region description

\

EXEC_ROM_1 0Ox0000 T
‘“ | Input section description

programl.o (+R0)

| _— Execution region description

DRAM 0x18000 0Ox8000 |
{ | Input section description
programl.o (+RW,+ZI) Fﬂf’”’
}
}
Load region description
LOAD_ROM_2 0x4000 S g b
{
| — Execution region description
EXEC_ROM_2 0x4000 |
Input section description
/
‘program2.0 (+R0O) Lfff”
Execution region description
SRAM 0x8000 Ox8000 ‘_,// . o
{ L — Input section description
‘pr‘ogr‘amZ .0 (+RW,+7T) l" Load view Execution view 0x20000
} \ Zero fill Z| section#2 DRAM
\ RW section#1 2x18000
T ~— ey
Module selector pattern Input section attributes
S I S N S 0x10000
Z| section#1 SRAM
RW section#2 Ox08000
RW section#2 I
0x4000___ RO section#2 RO section#2 _“_BOMZ
RW section#1 ROM1
0x0000 RO section#1 " RO section#1 0x00000

Overlay

e Use the OVERLAY attribute in a scatter-loading description file to place
multiple execution regions at the same address.

e An overlay manager is required to make sure that only one execution region
IS instantiated at a time.

e A region marked as OVERLAY is not initialized by the C library at startup.

e The contents of the memory used by the overlay region are the responsibility
of the overlay manager, which must copy any Code and Data, and initialize
any ZI when it instantiates a region.

EMB_APP 0x8000
{

STATIC_RAM 0x0 ; contains most of the RW and ZI code/data
{
% (+RW,+ZI)
}
OVERLAY_A_RAM 0x1000 OVERLAY ; start address of overlay...

{
}
OVERLAY_B_RAM 0x1000 OVERLAY
{

}

modulel.o (+RW,+ZI)

module2.o (+RW,+ZI)

; rest of scatter description...

Accessing linker-defined symbols

e Region-related symbols

Symbol
Load$$region_name$$Base
Image$$region_name$$Base
Image$$region_name$$Length
Image$$region_name$SLimit
Image$$region_name$$Z1$$Base
Image$$region_name$$Z1$$Length
Image$$region_name$$ZISSLimit

Description

Load address of the region

Execution address of the region

Execution region length in bytes (multiple of 4)

Address of the byte beyond the end of the execution region
Execution address of the ZI output section in this region
Length of the ZI output section in bytes (multiple of 4)

Address of the byte beyond the end of the ZI output section
in the execution region

LDR r0, =||Image$$region_name$SZI$$Limit||

Accessing linker-defined symbols

e Section-related symbols

Symbol Section Description

type

Image$$RO$$Base Output Address of the start of the RO output section.

Image$$ROSSLimIt Output Address of the first byte beyond the end of the RO output section.

Image$$RWS$Base Output Address of the start of the RW output section.

Image$$RWSSLimit Output Address of the byte beyond the end of the ZI output section. (The
choice of the end of the ZI region rather than the end of the RW
region is to maintain compatibility with legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output section.

Image$$ZIs$Limit Output Address of the byte beyond the end of the ZI output section.

SectionName3$$Base Input Address of the start of the consolidated section called SectionName.

SectionName$$Limit Input Address of the byte beyond the end of the consolidated section

called SectionName.

Accessing linker-defined symbols

extern byte *Image_ SRAM__ Base;
extern byte *Image_ SRAM__ Length;
extern byte *Load _SRAM__ Base;

extern byte *Image_ SRAM__ ZI Base;
extern byte *Image_ SRAM__ ZI _Length;

end_point = (dword *) ((dword) Image SRAM__Base + (dword) Image__ SRAM__ Length);

for(src = (dword *) Load__ SRAM__ Base,

dst = (dword *) Image_ SRAM__ Base;

dst < end_point; Load SRAM _Base

src-++, dst++) DCD |Load$$SRAMSBase|
{*dst — *grc: Image_ SRAM__ Base
1 DCD |Image$$SRAMS$$Base|

Image_ SRAM__ Length
DCD |Image$$SRAMSSLength|

Image SRAM ZI Base
DCD |Image$$SRAM$$SZI$$Base|

Image SRAM__ ZI Length
DCD |Image$$SRAMSSZISLength]

Application Start

C Library USER CODE

Image
entry point

___scatterload

. copy/decompress RW data main()
= Ccopy non-root code = causes the linker to
. zero uninitialized data [/~ - link in library

| initialization code

\/

__rt_entry
. set up application stack
and heap
. initialize library functions
. call top-level
constructors (C++) -

. Exit from application

Reset and Initialization Sequence

C Library USER CODE
1
. 2 reset handler *——————— Image.
main S = initialize stack pointers entry point
! u configure MMU/MPU
v 3 . setup cache/enable
1] TCM
scatterload
. copy/decompress RW data
copy non-root code i
. zero uninitialized data 0 user_nitial sta_ckh_eap{)
, L set up application stack
L 4 and hea
Y P
rt_entry
. initialize library - $Sub$$main()
functions 6
= call top-level _er:able ?aCheS and]
constructors (C++) —— — INterrupis
= Exit from application 7
main()
* 8 . causes the linker to link 1

in library initialization
code

ROM/RAM Remapping

Ox18000

ROM

0x10000

Ox4000

Aliased
ROM

Ox0000

Reset Handler

Branch
to real
ROM

Reset Handler

Reset Handler

Reset Handler

Remove
Alias

Reset Handler

Vectors

0x18000

ROM

0x10000

0x4000

RAM

0x0000

Stack Pointer Initialization

Len_FIQ_Stack EQU 256
Len_IRQ Stack EQU 256

Reset_Handler

. stack_base could be defined ahove, or located in a scatter file
LDR r0, stack_base ;

: Enter each mode 1in turn and set up the stack pointer
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
MOV sp, ro

MSR CPSR_c, #Mode_IRQ:OR:I_Bit:0R:F_Bit
SUB r0, r0, #Len_FIQ_ Stack
MOV sp, ro

MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit
SUB r0, r0, #Len_IRQ_ Stack

MOV sp, ro

: Leave core in SVC mode

IMPORT heap_bhase
EXPORT __user_initial_stackheap

__user_initial_stackheap

; heap base could be hard-coded, or placed by description file
LDR r0,=heap_base

; rl contains SB value «——— Set by C lib init code
BX 1r

___user_initial_stackheap

SB

HB

EXPORT __user_initial_stackheap

STACK ! ! 0X40000
HEAP i i 0x20000

__user_initial_stackheap
LDR r0, =0x20000 ;HB
LDR r1, =0x40000 ;SB
 r2 not used (HL)
: r3 not used
MOV pc, 1r

HL
0x28080000
HEAP
0x28000000
HB
SB
STACK 0x40000

IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap

__user_initial_stackheap
LDR r0, =0x28000000 ;HB
LDR rl1, =0x40000 ;SB
LDR r2, =0x28080000 ;HL

: r3 not used

MOV pc, Tr

The Structure of an Assembler Module

attributes

_——

iAREA Example, |CODE, READONLY| ; name of code block

Chunks of code or data manipulated by the linker

=<|IENTRY - 1st exec. iInstruction
First
instruction start
to be MOV ro, #15 ; set up parameters
executed MOV ri., #20
BL func : call subroutine
SwWi Ox11 ; terminate program
func - the subroutine
ADD ro, rO, ril - rO=1r0 +ril
MOV pc, Ir ; return from subroutine

> result In roO
END - end of code

A Simple Program

void hello () CODE32
{ AREA |].text||, CODE, READONLY
hello PROC
char *data; |L1.0]
const char text[]="Hello STMFD sp!,{rl1-r3,Ir}
world“: MOV ro,sp
MOV r2,#0xc
data = (char *)text; LDR r1,|L1.36]
printf (" %s ", data); BL __rt_memcpy
: MOV rl,sp
return, ADR 10,|L1.40]
} BL _printf
LDMFD sp!,{r1-r3,pc}
|L1.36]
DCD ||.constdata$i]]
|L1.40]
armcc -0 helloworld.s -S helloworld.c DCB " 00s "
DCB "WOWowowo"
ENDP
AREA ||.constdata||, DATA, READONLY, ALIGN=0
||.constdata$i]|]
DCB 0x48,0x65,0x6¢,0x6¢
DCB 0x6f,0x20,0x77,0x6f
DCB 0x72,0x6¢,0x64,0x00
END

Inline Assembly

For multiple instructions on the same line,
separate them with a semicolon (;).

Register names in the inline assembler are
treated as C variables. They do not necessarily
relate to the physical register of the same
name. If you do not declare the registerasa C
variable, the compiler generates a warning.

In Thumb mode, only rO-r7

Do not save and restore registers in inline
assembler. The compiler does this for you.

If registers other than CPSR and SPSR are
read without being written to, an error message
IS Issued.

BL, BLX cannot be used.
cannot use pseudo instruction such as LDR

int f(int x)
{
int rO;
__asm
{
ADD r0, x, 1
EOR x, r0, x
}
return x;
}

ARM Procedure Call Standard (APCS)

e defines:
— restrictions on the use of registers
— conventions for using the stack
— passing/returning arguments between function calls

— the format of a stack-based structure which may be 'backtraced' to provide a
list of functions (and parameters given) from the failure point backwards to
the program entry

— Compiler option : -apcs

APCS APCS Role reg APCS APCS Role

argument 1
0 al 8 v5 register variable 5
integer result

Static base
1 a2 argument 2 9 sb/vé
/ register variable 6
stack limit
2 a3 argument 3 10 sl/v7
/ register variable 7
3 a4 argument 4 11 fp frame pointer
4 vi register variable 1 12 ip scratch reg. / new sb in inter-link-unit
calls
5 v2 register variable 2 13 sp Lower end of current stack frame
6 v3 register variable 3 14 lr link address

7 v4 register variable 4 15 pc program counter

ARM Procedure Call Standard (APCS)

e Parameter Passing
— Passing arguments: core registers (r0-r3) and on the stack

— For subroutines that take a small number of parameters, only registers are
used.

— Passing argument for long long type: pair of consecutive argument registers
(e.g.,,rOand rl)
e Return value
— Integer or pointer: r0
— Two-word: rO and rl

r3 Argument 3
r1 Argument 1 sp-4 | Argument 5

0 ArgumentO ShLpT o n sp-8 Argument 6

ARM Procedure Call Standard (APCS)

e Stack

— Linked list of 'frames’ which are linked through what is known as a
'backtrace structure®

— Stored at the high end of each frame
— Allocated in descending address order
— The register sp
 Point to the lowest used address in the most recent frame.

o Backtrace

— The register fp (frame pointer) should be zero, or it should point to the last in
a list of stack backtrace structures which will provide a means of ‘'unwinding'
the program to trace backwards through the functions called

save code pointer [fp] « = = = = fp points here
return ip value [fp, #-4]

return link value [fp, #-8]

return pc value [fp, #-12]

return fp value [fp, #-16] points to next structure
[saved other registers]

ARM Procedure Call Standard (APCS)

0

int main(void) fp
{ one(): T zero_structure
return 0O; return pc
return link
} return ip
return f
void one(void) ps
{ K/
zero(); “sone_structure
two(); return pc
return; return link
} return ip
.) return f
void two(void) p}
{ //
printf("main...one...two\n");
return; s main_structure
} return pc
return link
void zero(void) return ip
{ return fp
return;
}

ARM Procedure Call Standard (APCS)

main:
mov
stmfd
sub
bl

mov

one:
mov
stmfd
sub
bl
bl

two:
mov
stmfd
sub
ldr
bl

zero:
mov
stmfd
sub

ip, sp

sp!, {fp, ip, lr, pc}
fp, ip, #4

one

r0, #0

L2

ip, sp

spl, {fp, ip, lr, pc}
fp, ip, #4

Zero

two

L3

ip, sp

sp!, {fp, ip, lr, pc}
fp, ip, #4

ro, .L5

printf

L4

ip, sp

sp!, {fp, ip, lr, pc}
fp, ip, #4

L7

sp >
fp
ip
Ir
sp’ N Pc

stmfd spl, {fp, ip, Ir, pc}

Outline of This Lecture

* Profiling
— Amdahl’s Law
— The 80/20 rule
— Profiling in the ARM environment

e Improving program performance
— Standard compiler optimizations
— Aggressive compiler optimizations
— Architectural code optimizations

Profiling and Benchmark Analysis

« Problem: You're given a program's source code (which someone else
wrote) and asked to improve its performance by at least 20%

e Where do you begin?
— Look at source code and try to find inefficient C code
— Try rewriting some of it in assembly
— Rewrite using a different algorithm
— (Remove random portions of the code) ©

Gene Amdahl

* One of the original architects of
the IBM 360 mainframe series

* Founded four companies
— Amdahl Corporation
— Trilogy Systems (Part of Elxsi)
— Andor Systems
— Commercial Data Servers (CDS)

o Arrelatively few sequential
Instructions might have a limiting
factor on program speedup such
that adding more processors may
not make the program run faster.

Amdahl’s Law

Amdahl's Law

12

10

Speedup
L]

(0 N 2 3 4 5 8 7 g ke
Fraction of code that can be parallelized

Profiling and Benchmark Analysis (cont’d)

e Most important question ...
— Where Is the program spending most of its time?

e Amdahl's Law

— The performance improvement gained from using some faster mode of
execution is limited by the fraction of the total time the faster mode can be
used

e Example:

Optimizabl
PHMIZADIE 2X Speedup

Unoptimizable Unoptimizable

Profiling and Benchmark Analysis (cont’d)

 How do we figure out where a program is spending its time?

— If we could count every static instruction, we would know which
routines (functions) were the biggest

* Big deal, large functions that aren't executed often don't really
matter

— If we could count every dynamic instruction, we would know which
routines executed the most instructions

o Excellent! It tells us the “relative importance” of each function
* But doesn't account for memory system (stalls)

— If we could count how many cycles were spent in each routine, we
would know which routines took the most amount of time

Profiling

 Profiling: collecting statistics from example executions
— Very useful for estimating importance of each routine
— Common profiling approaches:

 Instrument all procedure call/return points (expensive: e.g., 20% overhead)

« Sampling PC every X milliseconds -- so long as program run is significantly
longer than the sampling period, the accuracy of profiling is pretty good

— Usually results in output such as

Routine % of Execution Time
function_a 60%
function_ b 27%
function_c 4%
function_zzz 0.01%

— Often over 80% of the time spent in less than 20% of the code (80/20 rule)

— Can now do more accurate profiling with on-chip counters and analysis tools
 Alpha, Pentium, Pentium Pro, PowerPC
 DEC Atom analysis tool
» Both are covered in Advanced Computer Architecture courses

-

=

= [=]x]

File Edit View Search Project Debug Window Help

) R=N (= E31
File Search Processor Yiews Swvstem Views Execute Options Window Help
s |e| 3| & (8] x| Gl || B mEEE |[EeaEaEz |+ selele £ £ 3 | 2kl
T o
System Reqisters %
| namiarar [wratna [@ _J _J .
00007fed [OxeE00eE00] stmda rd, {rll, r13-pc} -
Debugger Intemals 00007fed [Oxe7if0010] dei 0xeT7L££0010 ; ? undefined -
. ot 00007fec [OxeS800e200] stmda rd, {rll, rl3-pc}
Statisti I
TErE R Es | SR 00007££0 [0xe7££0010] dei 0xeTE£0010 ; 2 undefined
Image 00007££4 [Oxe800eE00] stmda rd, {rll, r13-pc}
Torget Image | Fies | Class | 00007828 [0x=7£20010] ded 0xe7££0010 ; 2 undefined
- meld CA\Courses\19-349 Fall 20025E san 00007££c [Oxef00=800] stmda 0, {11, z13-pc!
= mein [0xe28£8090] add r@,pe, #0590 : #0x8098 -
00008004 [Oxegd =
00008008 [0xe08q Lesd [ijf-ua
0000800e [0xe08 .
00008010 [0xe02] Lookin: | 3 DebugRel |+ £ EZ-
00008014 [Oxe08 - -
00008018 [0xe24([C)ObjectCode T
M |!]Sorts »
) T B
XScale - Variables
Local | Global | Class | File name: |Sort5

#5cale - Congole Comrmand L

Files of type: IAXF Image {~ zf)

Insertion sort toock 279 clock ticks
Shell sort took 20 clock ticks
Quick sort took 19 clock ticks

Debug >
Frocessors

ag
|

Prafiling
¥ Prcfile

& Call graph profiling Interval: (100 [microseconds)

£ Flat profiing

<]

4

System Output Monitor
RDI Log Debug Log
Log file:

Program terminated normally.

e e]

B

For Help, press Fi

|<Mo Pos> [ARMUL %5cale Sorts.axf

DE2O S vzem

Timing execution with armsd

The simulator simulates every cycle
— Can gather very accurate timings for each function

Run the simulator to determine total time

Compiler can optimize for speed
prompt> armcc -Otime -0 sort sorts.c

Can also optimize for size
prompt> armcc -Ospace -0 sort sorts.c

Re-run the simulator to determine new total time
— new time is 2,059,629 usecs -- an improvement of 4.5% (compared to -g)

Profiling with armsd

e No compile-time options needed

* Run the simulator to profile, capturing callgraph data
prompt> armsd
armsd: load/callgraph sorts
armsd: ProfOn
armsd: go

instructs armprof to include information

armsd - PFOfWI’ Ite sorts. prf about the callers of each function
armsd: quit

prompt> armprof -Parent sorts.prf > profile

» To profile for only samples, skip the “/cal Igraph” portion
— avoids the 20% overhead (in this example)

armprof output ths fonction’ the cutrent functon.
/ /

Name cum% selt% desc% calls

main 96.4% 0.16% 95.88% o)
qgsort 0.44% 0.75% 1
_printf 0.00% 0.00% 3
clock 0.00% 0.00% 6
_sprintf 0.34% 3.56% 1000
randomise 0.12% 0.69% 1
hell _sort 1.59% 3.43% 1
insert_sort 19.91% 59.44% 1

main 19.91% 59.44% 1

insert sort 79.35% 19.91% 59.44% 1

strcmp 59.44% 0.00% 243432

qs_string_compare 3.17% 0.00% 13021

shell_sort 3.43% 0.00% 14059

insert_sort 59.44% 0.00% 243432

strcmp 66.05% 66.05% 0.00% 270512

Optimizing “sorts”

e Almost 60% of time spent in strcmp called by insert_sort

e strcmp compares two strings and returns int
— 0 if equal, negative if first is ""less than" second, positive otherwise

* Replace “strcmp(a,b)” call with some initial compares
it (a[0] < b[OoD {

result 1s neg
+
it (a[0] == b[0D]) {
if (a[1] < b[1]) {
result 1s neg
by
it (a[1] == b[1D {
if (strcmp(a,b) <= 0) {

racnlt+ 1 nen nr z7arn
I wvouUun -} ll\tv J — . v

}
}
}

» Result of this change is 20% reduction in execution time
— Avoids some procedure call overheads (in-lining)
— Avoids some loop control overheads (loop unrolling)
— Handles common cases efficiently and other cases correctly

Improving Program Performance

o Compiler writers try to apply several standard optimizations
— Do not always succeed

o Compiler writers sometimes apply aggressive optimizations
— Often not “informed” enough to know that change will help rather than hurt

« Optimizations based on specific architecture/implementation
characteristics can be very helpful

— Much harder for compiler writers because it requires multiple, generally very
different, “back-end” implementations

e How can one help?
— Better code, algorithms and data structures (of course)
— Re-organize code to help compiler find opportunities for improvement
— Replace poorly optimized code with assembly code (i.e., bypass compiler)

Standard Compiler Optimizations

e Common Sub-expression Elimination

— Formally, “An occurrence of an expression E is called a common sub-
expression if E was previously computed, and the values of variables in E
have not changed since the previous computation.”

— You can avoid re-computing the expression if we can use the previously
computed one.

— Benefit: less code to be executed

b b:
t6 = 4 * 1 t6 = 4* 1
X = a[t6] X = a[t6]
— t7 =4 * i t8 =4 * j
t8 = 4 *] t9 = a[t8]
t9 = a|t8] a[t6] = t9
a[t7] = t9 aft8] = x
—— ti10 =4 *] goto b
Before aftlo] = x After
goto b

Standard Compiler Optimizations

e Dead-Code Elimination

— If code is definitely not going to be executed during any run of a program,
then it is called dead code and can be removed.

— Example:
debug = O;

1T (debug){
print

+
— You can help by using ASSERTs and #1fdeTs to tell the compiler about
dead code

* Itis often difficult for the compiler to identify dead code itself

Standard Compiler Optimizations (con't)

* Induction Variables and Strength Reduction

— A variable X is called an induction variable of a loop L if every time the
variable X changed value, it is incremented or decremented by some
constant

— When there are 2 or more induction variables in a loop, it may be possible to
get rid of all but one

— Itis also frequently possible to perform strength reduction on induction
variables

* the strength of an instruction corresponds to its execution cost
— Benefit: fewer and less expensive operations

t4 =0 t4 = 0
Iabe[_XXX_ label XXX
b3 =131+1 t4 += 4
—_ * =
=41 t5 = a[t4]
FS = a[t4] iIT (t5 > v) goto label XXX
if (t5 > v) goto label XXX

Before After

Aggressive Compiler Optimizations

In-lining of functions
— Replacing a call to a function with the function's code is called “in-lining”

— Benefit: reduction in procedure call overheads and opportunity for additional code
optimizations
— Danger: code bloat and negative instruction cache effects

— Appropriate when small and/or called from a small number of sites

MOV
MOV
BL
MOV
SWI
c_add

MOV
STMDB
SUB
MOV
ADD
MOV
LDMDB

ro, r4 ; r4d ——> rO (param 1)
rl, #4 . 4 —-->rl1l (param 2)
c_add ; call c_add

r5, rO ; rO (result) --> r5
Ox11 ; terminate

rl2, ri3 , save sp

ri3!, {rO,rl,rll,r12,rl4,pc} ; save regs

ril, r12, #4 ; (sp - 4) --> rll

r2, rO , param 1 --> r2

r3, r2, rl1 ; param 1 + param 2 --> r3
ro, r3 ; move result to rO

ril, {rll, rl1l3, pc} ; restore regs

Before

ADD x5, r4, #4
SWI Ox11
After

Aggressive Compiler Optimizations (2)

e Loop Unrolling

— Doing multiple iterations of work in each iteration is called “loop unrolling”

— Benefit: reduction in looping overheads and opportunity for more code opts.

— Danger: code bloat, negative instruction cache effects, and non-integral loop div.
— Appropriate when small and/or called from small number of sites

Bit-counting loop

Unrolled bit-counting loop

Bit-counting loop

Unrolled bit-counting loop

int countbitl(unsigned int n)
{
int bits = 0;
while (n !'=0)
{
if (n & 1) bits++;
n>>=1;
¥

return bits;
}

int countbit2(unsigned int n)
{
int bits = 0;
while (n !'= 0)
{
if (n & 1) bits++;
if (n & 2) bits++;
if (n & 4) bits++;
if (n & 8) bits++;
n>>=4;
}

return bits;

countbitl PROC
MOV r1, #0
B |L1.20]|
|L1.8|
TST r0, #1
ADDNE 1, r1, #1
LSR r0, r0, #1
|L1.20|
CMP r0, #0
BNE |L1.8|
MOV r0, r1
BX Ir
ENDP

countbit2 PROC
MOV r1, r0
MOV r0, #0
B |L1.48|

|L1.12|
TSTrl, #1
ADDNE r0, r0, #1
TSTrl, #2
ADDNE r0, r0, #1
TSTrl, #4
ADDNE r0, r0, #1
TSTrl, #8
ADDNE r0, r0, #1
LSRrl,rl, #4

|L1.48|
CMPrl, #0
BNE |L1.12|
BX Ir ENDP

 Wetipviprks CogeWa U1 Deyeloper Suits

File Edit View Search Project Debug Window Help

AEsEav<LRAAAmMER s EHER

.

| % DebugFRel

Files | Link Order Taraets |

T argets

. DebugFel
@ Felzaze

3 targets

| ﬁ T arget Settings Panels

[F2RH C Compiter

[=+- Target
- Target Settings

- Acocess Paths
- Build Extras
- Runtime Settings
- File: M appings
- Source Trees

- ARM Target
- Language Settings
- AAM Assembler
- ARM C Compiler
- ARM C++ Compiler
- Thumb C Compiler

= Linker
ARM Linker
e ARM fromELF
=~ Editar

- Thumnb C++ Compiler — Equivalert Command Line

— Debug Control

V¥ Include preprocessor symbols
[~ Enable debug of inline functions

¥ Enable debug table generation

—Optimization Level

¢ Minimum (best debug view)

¥ Most [good debug view, good code)
|| ¢ Al {poor debug view, best code)

Optimization Criterion
" Forspace

01 Ctime g+

[

Target and Sourcel ATPCS I Wamingsl Emors Debugs Opt Freproc&asm’l CcLI_’

Factary Settings

Import Parel... | Export Panel...

Cancel | Apply

|
G | © Vieosofa.. |) ibox-Oul.. | (DlocaDik(C) | €)Blackooard: .. | [E]2 Miaosof... - [l @ A0

By &5 F

| B C:wmDo... | X profie-¥E... @O@@ 1:20PM

