ARM

The ARM Architecture

m Introduction to ARM Ltd

Programmers Model
Instruction Set
System Design

Development Tools

The ARM Architecture 2

ARM Ltd

m Founded in November 1990
= Spun out of Acorn Computers

m Designs the ARM range of RISC processor
cores

m Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers.

m ARM does not fabricate silicon itself

m Also develop technologies to assist with the
design-in of the ARM architecture
m Software tools, boards, debug hardware,
application software, bus architectures,
peripherals etc

The ARM Architecture)

m One of the most licensed and thus widespread processor cores in the

world
m Used in PDA, cell phones, multimedia players, handheld game console, digital

TV and cameras

ARMY7: GBA, iPod

ARM9: NDS, PSP, Sony Ericsson, BenQ
ARM11: Apple iPhone, Nokia N93, N800
75% of 32-bit embedded processors

m Used especially in portable devices due to its low power consumption
and reasonable performance

The ARM Architecture 4

ARM Powered Products

The ARM Architecture 5

ARM processors

m A simple but powerful design

m A whole family of designs sharing similar design principles and a
common instruction set

The ARM Architecture 6

Naming ARM

m ARMxyzTDMIEJFS

X: series

y: MMU

z: cache

T: Thumb

D: debugger

M: Multiplier

|: EmbeddedICE (built-in debugger hardware)
E: Enhanced instruction

J: Jazelle (JVM)

F: Floating-point

S: Synthesizible version (source code version for EDA tools)

The ARM Architecture 7

Popular ARM architectures

. ARM7TDMI

3 pipeline stages (fetch/decode/execute)

High code density/low power consumption

One of the most used ARM-version (for low-end systems)

All ARM cores after ARM7TDMI include TDMI even if they do not include TDMI
in their labels

. ARMOTDMI
= Compatible with ARM7
m 5 stages (fetch/decode/execute/memory/write)
m Separate instruction and data cache

= ARM11

The ARM Architecture 8

ARM family comparison

ARM family attribute comparison.

year 1995 1997 1999 2003

ARMY7 ARMO9 ARM10 ARMI11
Pipeline depth three-stage five-stage six-stage eight-stage
Typical MHz 80 150 260 335
mW/MH?Z* 0.06 mW/MHz 0.19 mW/MHz 0.5 mW/MHz 0.4 mW/MHz

(+ cache) (+ cache) (4 cache)

MIPSb/MHZ 0.97 1.1 1.3 1.2
Architecture Von Neumann Harvard Harvard Harvard
Multiplier 8 x 32 8 x 32 16 x 32 16 x 32

4 Watts/MHz on the same 0.13 micron process.
b MIPS are Dhrystone VAX MIPS.

The ARM Architecture 9

ARM is a RISC

m RISC: simple but powerful instructions that execute within a single
cycle at high clock speed.

m Four major design rules:

m Instructions: reduced set/single cycle/fixed length

m Pipeline: decode in one stage/no need for microcode
m Registers: a large set of general-purpose registers
[|

Load/store architecture: data processing instructions apply to registers only;
load/store to transfer data from memory

m Results in simple design and fast clock rate

m The distinction blurs because CISC implements RISC concepts

The ARM Architecture 10

ARM design philosophy

m Small processor for lower power consumption (for embedded system)
m High code density for limited memory and physical size restrictions
m The ability to use slow and low-cost memory

m Reduced die size for reducing manufacture cost and accommodating
more peripherals

The ARM Architecture 11

ARM features

m Different from pure RISC in several ways:

m Variable cycle execution for certain instructions: multiple-register load/store
(faster/higher code density)

= Inline barrel shifter leading to more complex instructions: improves
performance and code density

m Thumb 16-bit instruction set: 30% code density improvement

Conditional execution: improve performance and code density by reducing
branch

m Enhanced instructions: DSP instructions

The ARM Architecture 12

| l | F[Instruction] L

decoder
[Sign extend]
Write l Read
rls Register file] Rd
pc rO-ri5 Result
Rn|A Rm| B
A |BlAcc
Y Y Y Y
[Barrel shifter]
MAC
Y y N
& ALU] l
[Address register}-
l J r[lncrementer}
Address

The ARM Architecture)

External Memory

MAR: Memory MBR: Memory
Address Register|| Buffer Register

17 2

Address
Incrementer
|Ig1s:pe|l R11 || B || R3 |
m Load/store architecture _>|F““L“|l Rio_J| R6 || R2 |
Ir1z:se]l Ro || B3 || R1 |
m A large array of uniform registers [riz J[re [_ms |[_mo |
User Fiegislers

m Fixed-length 32-bit instructions

¢>| Booth's |<::>
m 3-address instructions Multiplier

-
Barrel Cwm]
Shifter Control
Unit
. e “CPSh |

The ARM Architecture 14

ARM family comparison

Classic SApplication® -~ Embedded
ARM Processors SLOTIEXIErOCE £c 3 Gortex Frocessors
ARM11MP IR CortexAS IR

-
ARM176)Z)

SC300
H Cortex-M3
¥ CoriexM4

: ARMv/M/ME ARMvEM

I.}-\.'-.-:I

ARMI26

SC100 ARM1136) B

ARMTTDMI

ARM968

ARMI46 ARM1156T2

Cortox-R4

&
- 4 .':

ARMv4T ARMv5T] ARMvé ARMv7AJR
ARM 32-Bir I5A

Thumb 16-Bit ISA

Thumb

Thumb=2 Mixed ISA o Thumb-2
' Nested Vectored
: NVIC Interrupt Controller

VPl VEPvl VFPv3 NVIC
Wake-up Interrupt

WIC Controller

wWIC

Jazelle |azelle

TrustZone TrustZone

5IMD 5IMD

NEON

The ARM Architecture 15

m ARMvV7 architecture
= Thumb-2 technology
= optimized, mixed 16/32-bit instruction set
= the performance advantages of the 32-bit
ARM ISA with the code size advantages of
the16-bit Thumb ISA
= NEON™ technology

= increase DSP and media processing
throughput

= offers improved floating point support to
address the needs of next generation 3D
graphics and games physics.

m ARM Cortex-A Series:

= Applications processors for complex OS and
user applications

m ARM Cortex-R Series:

m Embedded processors for real-time signal
processing and control applications

m ARM Cortex-M Series:

m Deeply embedded processors optimized for
microcontroller and low-power applications

The ARM Architecture

ARM Cortex

C

ortex

Intelligent Processors I:ry ARM’

p

.

M Cortex-A8

' Cortex-R4

i cortex-m3 i scao0”

x1-4 \

Cortex-A9

W cortex-R4F

B Cortex-M1 /

ARM Cortex

7 Cortex-A9 > 4X
Cortex-A8

ARM11™ MPCore™ > 44X
ARM1176J(F)-S™
ARMO926EJ-S™ @ H

4 Cortex-R4(F) > Cortex-R4X
ARM1156T2(F)-S™
ARMO946E-S™
ARM968E-S™
ARM7TDMP® -

L1

E Applications

2 Real-Time
4 ﬁ Embedded

F,
E MCU & FPGA
>

The ARM Architecture 17

Cortex-A8

DFT/Test neh:g ETM
[[

= Highest performance Cortex-A [e G, B T I

processor = =

B Symmetric, superscalar pipeline || ... [k el el foecoses] oo oot [[sressne] oo | [

for full dual-issue capability: 2 L| | ™ | =) [T s I Rl |

DMIPS/MHz — - -

s Thumb-2 ISA for performance ...

and code density i I 0 T I i

= TrustZone extensions for secure [e NEON un i

transactions and DRM ml [o W ocs W eoned ||

= NEON multimedia and signal - L2 eashie wod praiosd snghne = £ ‘ =

processing unit delivers over 2x [~ Fqu . ﬂ%ggv:' =il

performance of ARMv6 SIMD e TR %E.fﬁ | s B |

= Integrated L2 Cache with L s |]

configurable size and ECC 7l T |
I_I$I_JI_II_II_II_II_II_II_II_II_I

AXI

The ARM Architecture 18

m Optimized Cortex-A processor enabling
breakthrough performance and power
scalability

m 2nd generation 1-4X SMP technology
m Delivered as Uniprocessor and 1-4X MP

m Advanced pipeline delivering ~25% more
DMIPS/MHz over Cortex-A8 (2.5)

s Comparable Fy,x to fully synthesized
Cortex-A8 in same configuration

m Optimized floating-point unit; NEON engine

m New system-level integration features for
design optimization
m Accelerator coherence port

m Advanced bus interface unit for maximum
throughput

m Generalized interrupt control and distribution
system

m Suitable for high-end enterprise
networking through to wireless handsets

The ARM Architecture

Cortex-A9

Cortex™-A9 MPCore

ARM CoreSight™ MulticoreDebug and Trace Architecture

rpumneon| | PIM | Irpumveon) | FTM | rpumeon| PTM | (rpuineony | PTM

Cortex-A9 CPU| |Cortex-A9 CPU| |Cortex-A9 CPU| |Cortex-A% CPU

|-Cache | [D-Cache| |I-Cache | D-Cache| |I-Cache | D-Cache| |I-Cache | [D-Cache

Snoop Control Unit (SCU)
Generic

Interrupt Control Coherency
and Distribution | Cache-2-Cache JEEETENY Timers Port
Transfers Filtering

Advanced Bus Interface Unit

Accelerator

Primary AMBA 3 é4bit Interface Optional 2" I/F with Address Filtering

EpEpupEpEpEpEpEpEpEgEy-

Cortex-A9

IRQ/FIQ
) CoreSight Out of order ﬂ PL390
Coresight / -} Debug Access Port Virtualto multi-issue with fuliohas Interrupt
iy phiysical speculation Controller
Debug 4 profiling Monitor Block register pool - AL H —
| : 3l
Register * = 5 Write
ﬂ i =
Dual-instruction fiEnaie siuge 258 FPU/NEON back
Cortex-A9 Decode stage = O sage
Single core =) Branches £
Processor * 1T ST .
o= % %.g stage
fE ‘ft Auto- prefetcher Memary System
Instruction prefetch stage Load-Store Unit UTLB Program
Fast-loop Branch Prediction soreBuffer || | [[| Trace
mode Glabal Hlsmrj.rﬂuﬁer quad-sm‘t with fnrwarding MMU Unit
Instruction __BR-Target Addr Cache
cache Return Stack Data Cache
T Coresight
PL310 L2 Cache Control Teac
L2 Cache Bus Interface Unit (BIU) ECC. RAMs
Controller aster interface Secondary master with filtering)
‘ AMBA 3 AX| 64bit
The ARM Architecture

20

ARM-based

eo«el| Pl c | = > m
sl 22|22 |8 =| 2 3 =
= o > = 2 3 o 2
Company | Product Core Speed = = ® ® 2 s g °
[72] [o] g
S N ARM11
. NVIDIA Tegra™ 610 MPCore™ 800 MHz X X
Samsung 6410 ARM11 667 MHz X
Samsung S5PC100 Cortex-A8 800MHz
V7
QUALCOMWA | Qualcomm SnapDragon™ Architecture 1GHz
License
““treascale | Freescale | iMX515 Cortex-A8 1GHz
_ TI OMAP™ 3 Cortex-A8 1 GHz
s
TI OMAP ™4 Cortex-A9 2 cores,
1GHz ea
. PXA3## V5
l;] Marvell (contact for all Architecture 803 MHz
= the products) License

The ARM Architecture

ARM-based

Trace |Emulator | NOR [NAND
analyzer| pod | flash | flash | LPOOR2

.MX515 Applications Processor

Systom Control | Cannectivity

CPU Platform -
snEEdrogan | L Favon.]
[Pove g e |
bt e | P P | :
GPU Ltowns || e | |
Hean | ETM
Weclor Fioating Pt Undd | | ARM®
— / i Corlex
| MPCore™ | MPCore™
; HD Mulbtimadia 2 POWERVR™ SEX540 Image Signal
e Video OpnGLESZ0 || opevera | graphics accelerator | Processor (1SP)
Processor Procussor T T | XLy Shared memory controller/DMA
— USB OTG
D720 TV-Out] __HSPHY Timers, Interrupt controller, mailbox
| [usE HE Hest = 3] Aom 040
s fr— — = Bool'secure
SPI Image Processing Unit [sPoFm D Audio In/out
UART Display PI0 M-Shield™ Security Technology: SHA-1/MDS,
s0I0 Hesizing ard Hlendeg I = DES/3DES, RNG, AES, PKA, secure WOT, keys e
|
e = -— - A — Erhamm Display ol
NAND | Mobile | Securi Imigs Enhancement E!é:‘mr m::":’l?‘s';‘m Vibratars
Flash DDR Engine = ... 4
as ngine : = DG 00 BT m, it HF Speakers
—_— = e ———r— Micro Handset
oFUSES | [Smartoma | microphone

HO
television

$3C6410 Block Diagram S5PC100 Block Diagram

The ARM Architecture

System Peripheral ARM Core Multimedia Acceleration System Peripheral CortexAS8 Multimedia Acceleration
RTC ARM 1176JZF-S Camera Controller: 4MP Timers Camera IF w/ CSI-2
PLLx3 Multi Format CODEC [PLLx 4 1 32KB/32KB I/D Cache [m]
Tmer with PWM 4ch 1/D Cache 16KB / 16KB (H.264/ MPEG4 / VC1) DV ek 667/833MHz [0/3D G h?’]
Watch Dog Timer 1/ D-TCM 16KB /16KB NTSC, PAL TV out [DwAch) ___ 20730 Graphics |
DMA [32ch) 533MHz / 667MHz (+ Image Enhancement) Keypad (8 x 8)] 256KB NEON [NTSC/PAL/HDMI
Keypad (8x8) — JPEG Codec ADC & Touch Screen 12 Cache [JPEG CODEC
2D Graphics
Secure l:rrim 3D Graphics —
Connectivity Boot ROM Engine (4M, FIMG-3DSE V1.5) Connectivity Secure Secure Memory Interfaces
GPID : Standalone Rotator and 24bit 1IS Dolby 5.1 J RAM ROM SRAM / ROM / NOR /
F'S 24-bit D-5.1ch X432 Multi - Layer AHB/AXI Bus postbracessor 2xISACTTPCM | : 0neNAND
ACY7 & PCM 2xSPDIF Multi - Layer AHB/AXI Bus
Z AT _' Ax UART) O URAN
UART x4 & IrDA v1.1 Memory Subsystem DAL .‘
12:bit ADC 8ch S e SRAM /ROM/NOR/ ___ kDAv1] , LPDDRA0
2x HS-SPI {Full Duplex) Management Controller . T TFTLCD /LPDDR2
HSI & Modem I/F: = Mabile gggm &DOR 3x HS-SPI) EContiollegu /S MLC Flash
8KB DPRAM g MIPI-HS|/Moderm IF . w/8-hit ECC
USB 0TG 20 Normal, ldle Bhit for Dual i60 MILC NAND /8-bit ECC, oderm 24/18bit TFT-LCD
USE Host 1'1 D-Stop. Sleep 102;11024 %‘l‘g’”t AKE page mode USB Host1.1/0TG20 | 8bit for Dual i80 _
ST AT Wit LM 16t & blending CF3.0/ ATA Controller IxHSMMC-SD | Virtual Screen CFIl (ATA)

IPad’s A4

A4 1s a System-on-a-Chip, or SOC, that
integrates the mailn processor [ARM Cortex-A9
MPCore 1.e. Multi-Processing Core, i1dentical
to ones used In nVidia Tegra and Qualcomm
Snapdragon] with graphics silicon [ARM Mali
50-Series GPU], and other functions like the
memory controller on one piece of silicon —
not unlike what Intel is trying to achieve
with its future “Moorestown” Atom processor
that debuted inside LG’s Smartphone

1Pad doesn®"t have ARM®"s next-generation
Cortex A9 design which supports multicore
processors. Instead, 1t 1s a single-core ARM
Cortex A8 design which is along the same
lines as the current i1Phone 3GS, 1Pod touch
as well as the Palm Pre, Droid, etc. The A4
Is a 1GHz custom SoC with a single Cortex A8
core and a PowerVR SGX GPU (imagination).

The ARM Architecture

Intel’s Atom Processor

|Atom Platform Evolution |

Menlow Moorestown Medfield
Silverthorne Lincroft Medfield
Bonnell Bonnell Bonnell
CPU core CPU core GPU CPU core GPU
Core Core
- -
Video Video
A ator A ator
" Memory . Memory
e Controller E D Controller E
CMOS FS|
' et | dudio comioner |
Video
GPU Accelerator ; USB | o)
Core ! ! Controller

Control

Misc
SDIO |
| Porfs | 170

SDIO CE-ATA

Memory Porfs Interface

Displa Controller AP
Audio csl
Codec Interface

USB NAND
ATA Controller Controller
| éggj}% || Interface
Langwell
UsB
| Confroller | Al
Poulsbo
2008 2010 2011

Copyright © 2009 Hiroshige(Hiro) Goto All rights reserved.

LG GW990

The ARM Architecture 24

Cortex-R4(F)

m High-performance processor optimized for deeply embedded signal-
processing and control applications
m 8-stage superscalar pipeline delivers up to 400MHz+ @ 1.6DMIPS/MHz on

90nm
= Thumb-2 technology, hardware divider I ’_J'
1M 1 [I
= State-of-the-art ECC support in all memories . - b : 5
nt:r li:che VIC Port
= AMBA 3 AXI slave port for DMA to TCMs O S I 5
m Fit-for-purpose configurability E ———— A é
= Separately configured L1 caches: OkB, 4-64kB Proticton ATr(b:iztlar
= 0to 3 TCMs of up to 8MB each i - ﬁ
= 8 or 12 regions in MPU, or no MPU H -
m 2 — 8 Breakpoints, 1 — 8 Watchpoints E ____________________ | %
= Parity or ECC can be optionally included g o R i n
s Optional SP-optimized FPU (full IEEE754) C ¥ ¥ u
] E IAXI Nlasterlnterfacel i_AX_I_S_I?_ig_IQt_e_r_fqgg_j]
= Optional slave port
uuuTuuuuuTuu

The ARM Architecture 25

m An ARM7TDMI-S for the 21st century

m For extreme cost and power-sensitive
complex applications

Comparable or better F\,,x and gate count

30% more DMIPS, 28% more geomean
EEMBC

= 85% more DMIPS per mW

m State-of-the-art functionality
= Code everything in C
m Thumb-2 ISA — 6X code density, 10X
perf. vs. 8051
= Integrated Nested Vectored Interrupt
Controller (NVIC) with lowest interrupt
latency of any ARM

m Configurable/optional memory protection,
debug, trace

= UA device stand-by enabled with
integrated sleep modes, ULL(Ultra-Low
Leakage) libraries, state retention

m Broad adoption within Microcontroller
industry

The ARM Architecture

MHz / mW

375

325

Cortex-M3

Efficiency of 8051 vs. Cortex-M3

L

Clock requured for 1 Power requ

ired for 1

[8051
Il CortexM3

I B N B D e O e O O

B B NN .

Memory
protection unit

Data 55 Flash
watchpnmts patch

.........................

Senal wire

E . viewer

;

i

:ﬁ

Code
interface

SRAM &
Peripheral I/F

B R BB BILE B

I_II_II]f_lI_Il_II_II_II_II:lI_I

26

Cortex-M1

o N NN NN RN NN

= First ARM processor specifically ‘E_’ o N ‘_é_’
optimized for FPGA S ARM Core -
= High frequency, low-area soft O @ | 0
processor for low-cost volume FPGA g (I ALENEEE %=
= Upwards compatible with Cortex-M3 g LT %
onwards on ASIC/ASSP/MCU 5 5
= Capable of up to 200MHz on fast a -

FPGA device

m Delivers up to 0.8 DMIPS/MHz
efficiency from TCM

m Designed for synthesis on multiple
FPGA types
m Actel ProASIC3, Actel Igloo and Actel
Fusion
m Altera Cyclone-lll, Altera Stratix-Il|
m Xilinx Spartan-3, Xilinx Virtex-5

et g g g

The ARM Architecture

Mali-400 MP GPU

m Pioneering Scalable Multicore Processor (MP) GPU
m Scalable architecture builds on ARM MPCore™ experience
= Lowest memory bandwidth usage in the industry = lowest power
m Performance scalability to satisfy future display requirements
m ...from WVGA feature phone to 1080p HDTV
m Power and area scale to meet market needs

1 to 4 fragment
Programmable fragment L processor cores for
processors >1G pixels per BN E R scalable performance
second — : ; |
il Fragment | : Fragment: :Fragment : | Fragment D/’/
Pracessor EF‘n:(:as.sa:;ri ;Procassor; iPmcasé‘ﬂ'r'- D
|
1 il
C Memory Managemeant {Unit) l
C il
High efficiency vertex 0 s N .
shader for console- N L2 Cache Shared L2 cache with
class geometry loads O i unified memory access
O 0 for minimal system
O AMBAAXI Interface 8 bandwidth
C]

LII_JLJI_IPI_JLJLJIH_II_IU

Vertices and Pixels
textures

The ARM Architecture 28

Mali-400 MP GPU

m Power-efficient
= Memory bandwidth is the #1 power drain in graphics
= Mali-400 MP GPU reduces memory bandwidth and lowers power
= Combines best of immediate-mode and tile-based rendering
m Shared L2 cache with unified memory access
= Multiple levels of power gating supported

LT Tl Can power down cores
ot ot e M) between frames

i 2 :
Vertex Fragment| | Fragment' Fragmenf: : Fragment:
j6essor| |Processor| (Processor (Processos, [Processor
: & e
- 2 B 0

'R
.
.
"
¥
.
.
]
..
"
"
.'
®
.
.
.
¥
..
.
.y
¥
"

Memory Management (Unit)

Fine-grained power gating of core
sub-blocks ensures only required
functionality draws power

L2 Cache

AMBA AXI Interface

[_II_I[_JI_IPI_II_!I_EEI_II_II_[

Vertices and Fixels
textures

F—IF"II_I["II'_'1I"I'F"II_II"1I_|A-._I\

| B B B B B B BB B

The ARM Architecture 29

Mali-400 MP GPU

=
=
>
Q
o |
e |
QO |i
O |
O |
© >
&
@)
()]
O

TV(SD)

Flash 10

Mali-400 MP TV(HD)
3D Gaming

‘Hydra

' TV HD Ul (NDS i

+ Rothko, TAT ;

e s R, L R e I TR e, A

‘Mali200™

===

';t Mall55 : “ : QD Nav;gaﬂon :

o Cava Gam@

o ——— i 2b Navsga?non) \idoo

N | We_b N ' .

\\\\ X ' browsmg . :Phone Ul “ i Post- Processmg

Fill rate

The ARM Architecture 30

Introduction to ARM Ltd

m Programmers Model
Instruction Sets
System Design

Development Tools

The ARM Architecture

31

ARM Data Sizes and Instruction Sets

m The ARM is a 32-bit architecture.

m When used in relation to the ARM:
m Byte means 8 bits
s Halfword means 16 bits (two bytes)
s Word means 32 bits (four bytes)

m Most ARM’s implement two instruction sets
m 32-bit ARM Instruction Set
= 16-bit Thumb Instruction Set

m Jazelle cores can also execute Java bytecode

The ARM Architecture 32

Processor Modes

m The ARM has seven basic operating modes:

m User : unprivileged mode under which most tasks run
m FIQ : entered when a high priority (fast) interrupt is raised
= |IRQ : entered when a low priority (normal) interrupt is raised

m Supervisor : entered on reset and when a Software Interrupt
instruction is executed

m Abort : used to handle memory access violations
m Undef : used to handle undefined instructions

m System : privileged mode using the same registers as user mode

The ARM Architecture 33

The ARM Register Set

Current Visible Registers

Abort Mode

Banked out Registers

User FIQ IRQ SvC Undef

r8

ro
rio
ril

ri2

ri3 (sp) §ris (sp) f r13 (sp) § r13 (sp)
ri4 (lr) giria Clr) g r14 (Ir) §ri4 (Ir)

spsr spsr spsr spsr spsr

ri3 (sp)
ri4 (Ir)

cpsr

The ARM Architecture 34

ARM Register Organization Summary

User FIQ IRQ SvC Undef Abort

ro

ri

r2

r3

r4

rs

ré

r7

r8

ro

rio

ril

ri2
ri3 (sp)
ri4 (Ir)
ri15 (pc)

cpsr
spsr spsr spsr spsr spsr

Note: System mode uses the User mode register set

Thumb state
Low registers

r8

ro

ri10

ril

ri2
ri3 (sp)
ri4 (Ir)

Thumb state
High registers

ri3 (sp)
ri4 (Ir)

The ARM Architecture 35

The Registers

m ARM has 37 registers all of which are 32-bits long.
= 1 dedicated program counter
= 1 dedicated current program status register
m 5 dedicated saved program status registers
m 30 general purpose registers
m The current processor mode governs which of several banks is
accessible. Each mode can access
m a particular set of rO-r12 registers
m a particular r13 (the stack pointer, sp) and r14 (the link register, Ir)
= the program counter, r15 (pc)
m the current program status register, cpsr

Privileged modes (except System) can also access
m a particular spsr (saved program status register)

The ARM Architecture 36

31 28 27 24 23

8 7 6 5 4 0

INIZICIVQ JI U n d e f|i

e d IIFT mode
] 1 1 1

m Condition code flags
= N = Negative result from ALU
Z = Zero result from ALU

m Sticky Overflow flag - Q flag

Aot b ETEE) L ~nl s
B AIChiecuwure ol c/Jd oy

m Indicates if saturation has occurred

m JDbit
m Architecture 5TEJ only

m J=1: Processor in Jazelle state

The ARM Architecture

C = ALU operation Carried out
V = ALU operation oVerflowed

X ' C

Interrupt Disable bits.
= | =1: Disables the IRQ.
= F =1: Disables the FIQ.

T Bit
m Architecture xT only
= [=0: Processor in ARM state
= T =1:Processor in Thumb state

M[4:0] | Mode
Mode bits 10000 User
= Specify 10001 FIQ
the processor 10010 1RO
mode 10011 Supervisor
10111 Abort
11011 Undefined

2/

Program Counter (r15)

m When the processor is executing in ARM state:
m Allinstructions are 32 bits wide
m All instructions must be word aligned

m Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as
instruction cannot be halfword or byte aligned).

m When the processor is executing in Thumb state:
m All instructions are 16 bits wide
m All instructions must be halfword aligned

1-1

wiith hi
v

m Therefore the pc value is stored in bits [31:1] with

instruction cannot be byte aligned).

m When the processor is executing in Jazelle state:
m Allinstructions are 8 bits wide
m Processor performs a word access to read 4 instructions at once

The ARM Architecture 38

Exception Handling

m When an exception occurs, the ARM:
m Copies CPSR into SPSR_<mode>
m Sets appropriate CPSR bits
= Change to ARM state
= Change to exception mode
= Disable interrupts (if appropriate)
m Stores the return address in LR_<mode>
m Sets PC to vector address

m To return, exception handler needs to:
m Restore CPSR from SPSR_<mode>
m Restore PC from LR_<mode>

This can only be done in ARM state.

The ARM Architecture

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

FIQ
IRQ
(Reserved)
Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

Vector Table

Vector table can be at
OXFFFFOOOO on ARM720T

and on ARM9/10 family devices

39

Development of the

: Improved :

: Halfword ARM/Thumb | Jazelle

: and signed Interworking : Java bytecode

halfword / CLZ execution

: byte support : :

i System SA-110 | | Saturated maths | ARMOEJ-S ARMO926EJ-S
: i multiply-

SA-1110 accumulate ARM7EJ-S ARM1026EJ-S
instructions oo e
: | ARM1020E : SIMD Instructions

: Thumb : :

: instruction : Multi-processing

: XScale :
Early ARM i set : : \/6 Memory

architectures i 5 :
il ARM7TDMI || ARMOTDMI i | ARMOE-S garCh'teCture(VMSA)

: Unaligned data

| ARM720T ARM940T |} | ARM966E-S : support ARM1136EJ-S

il

The ARM Architecture 40

Introduction to ARM Ltd

Programmers Model
m [nstruction Sets
System Design

Development Tools

The ARM Architecture

41

ARM conditional Execution and Flags

m ARM instructions can be made to execute conditionally by postfixing
them with the appropriate condition code field.

m This improves code density and performance by reducing the number of
forward branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE rO,rl1,r2
ADD ro,rl,r2

skip —

m By default, data processing instructions do not affect the condition code
f

flags but the flags can be optionally set by using “S”. CMP does not
need “S”.

loop

7
QJ

SUBS ril.rl.#1 <«——| decrement r1 and set flags
BNE loop «—

if Z flag clear then branch

The ARM Architecture 42

ARM Setting the condition codes

m Any data processing instruction can set the condition codes if the
programmers wish it to

R1 RO
64-bit addition
+ | R3 R2
ADDS R2, R2, RO
R3 R2

ADC R3, R3, R1

The ARM Architecture 43

Condition Codes

m The possible condition codes are listed below:
= Note AL is the default and does not need to be specified

The ARM Architecture

Suffix Description Flags tested
EQ Equal Z=1

NE Not equal Z=0

CS/HS | Unsigned higher or same C=1

CC/LO | Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned higher C=1& Z=0
LS Unsigned lower or same C=0or Z=1
GE Greater or equal N=V

LT Less than N!=V

GT Greater than Z=0 & N=V
LE Less than or equal Z=1or N=IV
AL Always

44

Examples of conditional

m Use asequence of several conditional instructions
1T (a==0) func(l);

CMP ro,#0
MOVEQ ro,#1
BLEQ func

m Set the flags, then use various condition codes
1T (a==0) x=0;
iIf (a>0) x=1;
CMP ro,#0
MOVEQ ri,#0
MOVGT ri,#1

m Use conditional compare instructions
iIT (a==4 || a==10) x=0;
CMP ro,#4
CMPNE ro,#10
MOVEQ ri,#0

The ARM Architecture 45

Branch instructions

m Branch: B{<cond>} label

m Branch with Link : BL{<cond>} subroutine_ label

31 28 27 25 24 23 0
[1 L rFr 1+ttt 1ttt 1 171t 17 1 17T 17 [171711
Cond 1 0 1)L Offset

e — L Link bit 0=Branch
1 = Branch with link
Condition field

m The processor core shifts the offset field left by 2 positions, sign-extends
it and adds it to the PC
s + 32 Mbyte range
= How to perform longer branches?

The ARM Architecture 46

ARM Data processing Instructions

m Consist of ;

= Arithmetic: ADD ADC SUB SBC RSB RSC
= Logical: AND ORR EOR BIC

s Comparisons: CMP CMN TST TEQ

= Data movement: MOV MVN

m These instructions only work on registers, NOT memory.

m Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

m Comparisons set flags only - they do not specify Rd
= Data movement does not specify Rn

m Second operand is sent to the ALU via barrel shifter.

The ARM Architecture 47

ARM Data processing Instructions

Arithmetic Operations Bit-wise Logical Operations
ADDrO,rl,r2 |rO:=rl+r2 AND rO, rl,r2 |rO:=rl and r2
ADCrO,rl,r2 |rO:=rl+r2+C ORRIrO,rl,r2 |rO:=rlorr2
SUBrO,rl,r2 |rO:=rl-r2 EORrO,rl, r2 | rO:=rl xor r2
SBCrO,rl,r2 |rO:=rl-r2+C-1 BICrO,rl,r2 |rO:=rland (not)r2
RSBrO,rl,r2 |rO:=r2-rl

RSCrO,rl,r2 |rO:=r2-r1+C-1

Register Movement Comparison Operations
MOV rQ, r2 rQ:=r2 CMP rl1, r2 setcconrl-r2
MVN rQ, r2 rO := not r2 CMN r1, r2 set cconrl+r2

TSTrl, re set cconrland r2
TEQ], r2 set cc on rl xor r2

The ARM Architecture 48

The Barrel Shifter

LSL : Logical Left Shift ASR: Arithmetic Right Shift
]
CF|<— Destination [<— 0 > |Destination > CF
Multiplication by a power of 2 Division by a power of 2,

preserving the sign bit

LSR : Logical Shift Right ROR: Rotate Right
..0 —>| Destination > CF —>| Destination > CF
Division by a power of 2 Bit rotate with wrap around

from LSB to MSB

RRX: Rotate Right Extended

Y

CF

—>| Destination

Single bit rotate with wrap around
from CF to MSB

The ARM Architecture

49

Shifted register operands

Mnemonic Description Shift Result

LSL logical shift left xLSLy x<y

LSR logical shitt right xLSRy (unsigned)x> y

ASR arithmetic right shift ~ xASRy (signed)x > y

ROR rotate right XRORy ((unsigned)x > y) | (x << (32 — y))
RRX rotate right extended xRRX (c flag < 31) | ((unsigned)x > 1)

The ARM Architecture

50

Logical shift left

C |e—| <weeee register P e O

MOV RO, R2, LSL #2 @ RO:=R2<<2
@ R2 unchanged
Example: 0..0 0011 0000
Before R2=0x00000030
After R0O=0x000000CO
R2=0x00000030

The ARM Architecture

Logical shift right

0 — e > register » —| C

MOV RO, R2, LSR #2 @ RO:=R2>>2
@ R2 unchanged
Example: 0..0 0011 0000
Before R2=0x00000030
After R0O=0x0000000C
R2=0x00000030

The ARM Architecture

Arithmetic shift right

rMSBi---vregister --------- - —|c

)

MOV RO, R2, ASR #2 @ RO:=R2>>2
@ R2 unchanged
Example: 1010 0..0 0011 0000
Before R2=0xA0000030
After RO=0xE800000C
R2=0xA0000030

The ARM Architecture

Rotate right

]

MOV RO, R2, ROR #2 @ RO:=R2 rotate
@ R2 unchanged
Example: 0..0 0011 0001
Before R2=0x00000031
After R0O=0x4000000C
R2=0x00000031

The ARM Architecture 54

Rotate right extended

C |——| oo > register

C

MOV RO, R2, RRX @ RO:=R2 rotate

@ R2 unchanged

Example: 0..0 0011 0001

Before R2=0x00000031, C=1

After R0O=0x80000018, C=1
R2=0x00000031

The ARM Architecture

Using the Barrel Shifter:

Register, optionally with shift operation
= Shift value can be either be:

.
.
.
.
.
.
.
.
o*
.

y
Operand Operan d¥ = 5 bit unsigned integer
1 2 = Specified in bottom byte of another
register.

m Used for multiplication by constant

Barrel .
Shifter Immediate value
= 8 bit number, with a range of 0-255.

= Rotated right through even number of
\ positions
m Allows increased range of 32-bit
constants to be loaded directly into
registers

ADD ro, rl, r2

ADD rO, rl, r2, LSL#7

ADD rO, rl, r2, LSL r3
Result ADD r0, ri, #Ox4E

The ARM Architecture 56

Immediate constants (1)

m No ARM instruction can contain a 32 bit immediate constant
= All ARM instructions are fixed as 32 bits long

m The data processing instruction format has 12 bits available for operand?2

rot immed_8

N T N N M QuiCk QUiZ:
Oxe3a004ff

MOV rO, #7777

Shifter

ROR

m 4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

m Ruleto remember is “8-bits shifted by an even number of bit positions”.

The ARM Architecture 57

Encoding data processing

31 28 27 26 25 24 21 20 19 16 15 12 11 0
| cond ‘O O‘#| opcode |S RN Rd operand 2 ;
[_ destination register

set condition codes

1
1
first operand register
]
]
|

arithmetic/logic function

11 8 7 0

I
I
I immediate shift Iength——————-| ‘
]

shift type

second operand register |

11 8 7 6 5 4 3 0

The ARM Architecture

Immediate constants (2)

m Examples:
31 0
ror #0 olojofolofo|o|0|0|O|O|O|O|OfO|O|O|O|O|O|O|O]|O o_ range 0-0x000000ff step 0x00000001

ror #8 _0 ojolo|o|o|o|o|ofo|0|O|O|O|O|OfO|O|O|O(O|O|O|O range 0-0xff000000 step 0x01000000

ror #30| |o|o|o|o|o|o|o|o|o|o|o|0|O|O|O|O|O|O|O|O|O o_o 0 range 0-0x000003fc step 0x00000004

m The assembler converts immediate values to the rotate form:
m MOV rO,#4096 - uses 0x40 ror 26
m ADD rl1,r2,#0xFFO0O00 ; uses OxFF ror 16

m The bitwise complements can also be formed using MVN:
m MOV rO, #OXFFFFFFFF , assembles to MVN rO,#0

m Values that cannot be generated in this way will cause an error.

The ARM Architecture 59

Loading 32 bit constants

m To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:

m LDR rd, =const

m This will either:
= Produce a MOV or MVN instruction to generate the value (if possible).

or

m Generate a LDR instruction with a PC-relative address to read the constant
from a literal pool (Constant data area embedded in the code).

m For example
m LDR rO,=0xFF => MOV rO,#OxFF
m DR rO,=0x55555555 => LDR rO, [PC,#Imml12]

DD GE5555555 >

m This is the recommended way of loading constants into a register

The ARM Architecture 60

Multiply

® Syntax:
. MUL{<cond>}{S} Rd, Rm, Rs Rd=Rm * Rs
s MLA{<cond>}{S} Rd,Rm,Rs,Rn Rd = (Rm * Rs) + Rn
m [U[SIMULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs
m [U[SIMLAL{<cond>}S} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

m Cycletime
m Basic MUL instruction
m 2-5 cycles on ARM7TDMI
= 1-3 cycles on StrongARM/XScale
m 2 cycles on ARM9E/ARM102xE
= +1 cycle for ARMO9TDMI (over ARM7TDMI)
s +1 cycle for accumulate (not on 9E though result delay is one cycle longer)
= +1 cycle for “long”

m Above are “general rules” - refer to the TRM for the core you are using
for the exact details

The ARM Architecture 61

Multiplication

m Multiply-accumulate (2D array indexing)
MLA R4, R3, R2, R1 @ R4 = R3xR2+R1

= Multiply with a constant can often be more efficiently implemented using
shifted register operand

MOV R1, #35
MUL R2, RO, R1
or
ADD RO, RO, RO, LSL #2 @ RO>=5xRO
RSB R2, RO, RO, LSL #3 @ R2 =7xRO’

The ARM Architecture 62

ARM Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load
LDRSH Signed halfword load

m Memory system must support all access sizes

m Syntax:
m LDR{<cond>}{<size>} Rd, <address>
m STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

The ARM Architecture 63

Address accessed

m Address accessed by LDR/STR is specified by a base register plus an
offset

m For word and unsigned byte accesses, offset can be

= An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
LDR rO,[r1,#8]

m A register, optionally shifted by an immediate value
LDR rO,[rl,r2]
LDR rO,[r1,r2,LSL#2]

m This can be either added or subtracted from the base register:
LDR rO,[rl1,#-8]
LDR rO,[rl,-r2]j
LDR rO0,[rl,-r2,LSL#2]

m For halfword and signed halfword / byte, offset can be:
= An unsigned 8 bit immediate value (ie 0-255 bytes).
m A register (unshifted).

m Choice of pre-indexed or post-indexed addressing

The ARM Architecture (57

ARM Pre or Post Indexed Addressing?

m Pre-indexed: STR rO,[rl,#12]

Offset ro Source

> 0x20c — Register
12 - egistel
rl T
Base
Register IRAZAUY | > 0x200

Auto-update form: STR rO,[rl1,#12]!

m Post-indexed: STR rO,[rl1],#12

Updated ri Offset
Base Ox20c [ra—
ource
Original ri T / 0x5 Register
0x5 for STR

Base .
Register 0x200 > 0x200

The ARM Architecture 65

LDM / STM operation

m Syntax:
<LDM| STM>{<cond>}<addressing_mode> Rb{!}, <register list>

m 4 addressing modes:

LDMIA / STMIA increment after
LDMIB / STMIB increment before
LDMDA / STMDA decrement after
LDMDB / STMDB decrement before

1A IB DA DB

LDMxx r10, {rO,rl,r4}
STMxx r10, {rO,rl,r4}

Increasing
Address

Base Register (Rb)

The ARM Architecture 66

LDM / STM operation

ro—m[10 | 100c 9 — 100,

!
rg — r5 | 100c rg — | 100c
et

rg —— | 1000, rg —— r 1000,

STMDA r9!, {rO,rl1,r5} STMDB r9!, {rO,rl,r5}

The ARM Architecture 67

w The mapping between the stack
ARM PPING |

Ascending Descending
Full Empty Full Empty
Before | STMIB LDMIB
Increment STMFA LDMED
After STMIA LDMIA
STMEA | LDMFD

i I i
Decrement LDMEA | STMED
S N N
LDMFA STMED

The ARM Architecture 68

Software Interrupt (SWI)

31 28 27 24 23 0
T T [T T T [T T 7T T T T T T T T T T T T T T T T T T 701

Cond 1111 SWI number (ignored by processor)
L |

Condition Field

m Causes an exception trap to the SWI hardware vector

m The SWI handler can examine the SWI number to decide what operation
has been requested.

By using the SWI mechanism, an operating system can implement a set
of privileged operations which applications running in user mode can
request.

m Syntax:
m SWI{<cond>} <SWI number>

The ARM Architecture 69

What do SWIs do?

m SWiIs (often called software traps) allow a user program to “call” the OS --
that is, SWIs are how system calls are implemented.

m When SWIs execute, the processor changes modes (from User to
Supervisor mode on the ARM) and disables interrupts.

m Types of SWIs in ARM Angel (axd or armsd)

= SWI WriteC(SWI 0O)

= SWI WriteO(SWI 2)
SWI_ReadC(Swl1 4)
SWI_Exit(SWI 0x11)
SWI_EnterOS(SWI 0x16)
SWI_Clock(SWI 0Ox61)
SWI_Time(SWI 0x63)

The ARM Architecture

Write a byte to the debug channel

Write the null-terminated string to debug channel
Read a byte from the debug channel

Halt emulation - this is how a program exits

Put the processor in supervisor mode

Return the number of centi-seconds

Return the number of secs since Jan. 1, 1970

70

What Happens on an SWI1? (1)

m The ARM architecture defines a Vector Table indexed by exception
type @
m One SWI, CPU does the following: PC <-=0x08

m Also, sets LR_svc, SPSR_svc, CPSR (supervisor mode, no IRQ)

Vector Table (spring board)
starting at Ox00 in memory

USER Program 0x00 | to R_Handler |[(Reset
ADD rO0,r0,rl @ 0x04 | to U_Handler |[(Undef instr.) SWI Handler
SWI 0x10 » OX08 | to S _Handler |[(SWI) >
SUB r2,r2,r0 OxOc | to P_Handler |(Prefetch abort)
Ox10| to D_Handler |(Data abort)
Ox14| ... (Reserved)
Ox18| to 1_Handler |(IRQ)
Oxlc| to F_Handler |[(FIQ)

The ARM Architecture

71

What Happens on an SW1? (2)

m Not enough space in the table (only one instruction per entry) to hold all
of the code for the SWI handler function

m This one instruction must transfer control to appropriate SWI Handler @

m Several options are presented in the next slide

Vector Table (spring board)
starting at Ox00 in memory

USER Program 0x00 | to R_Handler |[(Reset
ADD rO0,r0,rl 0x04| to U_Handler |(Undef instr.) (2) SWI Handler
SWI 0x10 » OX08 | to S _Handler |[(SWI) >
SUB r2,r2,r0 OxOc | to P_Handler |(Prefetch abort)
Ox10| to D_Handler |(Data abort)
Ox14| ... (Reserved)
Ox18| to 1_Handler |(IRQ)
Oxlc| to F_Handler |[(FIQ)

The ARM Architecture 72

ARM “Vectoring” Exceptions to Handlers

m Option of choice: Load PC from jump table (shown below)

m Another option: Direct branch (limited range)

Vector Table (spring board)
starting at Ox00 §In memory

USER Program 0x00[LDR pc, [pc, 0x100] SWI Handler
ADD rO0,r0,rl 0x04 | LDR pc, [pc, 0x100] ® (S_Handler)
SWI OX1O > OX08 LDR pC, [pC, OXlOO] »

SUB r2,r2,r0 OxOc | LDR pc, [pc, 0x100]

Ox10| LDR pc, [pc, 0x100]
Ox14 | LDR pc, [pc, 0x100]
Ox18| LDR pc, [pc, 0x100]
Oxlc| LDR pc, [pc, 0x100]

1

“Jump” Tabl
0x108 | &A Handler

0Ox10c &U_Handler/
0x110 | &S_Handler Why 0x110?
0Ox114 | &P _Handler

The ARM Architecture 73

ARM What Happens on SWI Completion?

m Vectoring to the S_Handler starts executing the SWI handler

m When the handler is done, it returns to the program -- at the instruction
following the SWI

= MOVS restores the original CPSR as well as changing pc @

Vector Table (spring board)
starting at Ox00 in memory

SWI Handler

USER Program 0x00 | to R_Handler |[(Reset
ADD rO,r0,r1 0x04 | to U_Handler |(Undef instr.) (S_Handler)
SWI 0x10 » OX08 | to S _Handler |[(SWI) >
SUB r2,r2,r0 OxOc | to P_Handler |(Prefetch abort)
Ox10| to D_Handler |(Data abort)
Ox14| ... (Reserved)
Ox18| to 1_Handler |(IRQ)
Oxlc| to F_Handler |[(FIQ)

@ MOVS pc, Ir

The ARM Architecture 74

ARM How Do We Determine the SWiI

m All SWIs go to 0x08

Vector Table (spring board)
starting at Ox00 in memory

SWI Handler

USER Program 0x00 | to R_Handler |[(Reset

ADD r0,rO,rl 0x04 | to U_Handler [(Undef i1nstr.) (S_Handler)

SWI 0x10 » OX08 | to S _Handler |[(SWI) >

SUB r2,r2,r0 Ox0c | to P_Handler ((Prefetch abort) SW1 Handler must
0x10 | to D_Handler |(Data abort) serve as clearing
Ox14| ... (Reserved) house for different
0x18| to I_Handler |[(1RQ) SWis
Oxlc| to F_Handler |[(FIQ)

MOVS pc, Ir

The ARM Architecture 75

ARM SWI Handler Uses the “Comment” Field

On SWI, the processor
(1) copies CPSR to SPSR_SVC
(2) set the CPSR mode bits to supervisor mode
(3) sets the CPSR IRQ to disable
(4) stores the value (PC + 4)into LR_SVC
(5) forces PC to 0x08

cond | 11113 24-bit “comment” field (ignored by processof

~

Vector Table (spring board)
starting at Ox00 in memory

SWI Handler

USER Program 0x00 | to R_Handler |[(Reset S Handl
ADD/ ro,ro,rl 0x04 | to U_Handler |(Undef instr.) (S_Handler)
SWI! OX10O oeeveeeforremmneennn » Ox08 | to S_Hand'er (SW') >
SUB r2,r2,r0 OxOc | to P_Handler |(Prefetch abort) LDR rO, [Ir,#-4]
0x10| to D_Handler [(Data abort) BIC rOZrO,a&OxffOOOOOO
Ox14| ... (Reserved)
Ox18| to 1_Handler |(IRQ)
oxlc|to F_Handler [(FIQ) RO holds SWI number

MOVS pc, Ir

The ARM Architecture 76

: Use The SWI # to Jump to “Service
ARM P .

On SWI, the processor
(1) copies CPSR to SPSR_SVC
2) set the CPSR mode bits to supervisor mode
3) sets the CPSR IRQ to disable
4) stores the value (PC + 4)into LR_SVC
)

cond| 1111 | 24-bit “comment” field (ignored by processof)

5) forces PC to Ox08

.~ A~ A~ A~

Vector Table (spring board)
starting at 0x00 In memory

SWI Handler

USER Program 0x00 | to R_Handler |(Reset (S_Handler)
ADD/ ro,ro,rl 0x04 | to U_Handler |[(Undef instr.) —
SWE! OXLO-eereereeefoerrennenenns » 0x08 | to S_Handler |[(SWI) s
SUB r2,r2,r0 0x0c | to P_Handler |(Prefetch abort) EEI)(R: ::8’%';2&;2:000000
0x10| to D_Handler |[(Data abort) 7
Ox14| ... (Reserved) switch (ro){
0x18| to 1 Handler (lRQ) case 0x00: service_SWI18;
— case 0x01: service_SWI2(Q);
Oxlc| to F_Handler (FIQ) case 0x02: service:SWIS();
}
MOVS pc, Ir

The ARM Architecture 77

ARM Problem with The Current Handler

On SWI, the processor What was in RO? User program
(1) copies CPSR to SPSR_SVC may have been using this
(Z)rﬁgtdtehe CPSR mode bits to supervisor register. Therefore, cannot just
(3) sets the CPSR IRQ to disable use it - must first save it
(4) stores the value (PC + 4)into LR_SVC
(5) forces PC to 0x08

Vector Table (spring board)
starting at Ox00 In memory

SWI Handler

USER Program 0x00 | to R_Handler |[(Reset (S_Handler)
ADD/ ro,ro,rl 0x04 | to U_Handler |[(Undef instr.) —
SWEI OXLO coeeeeeefrnseneeneens » Ox08 | to S_Handler [(SWI) >
SUB r2,r2,r0 0x0c | to P_Handler |(Prefetch abort) EEI)(R: ::8’%';2&;2:000000
0x10| to D_Handler |[(Data abort) 7
Ox14| ... (Reserved) switch (ro){
0x18| to 1| Handler (lRQ) case 0x00: service_SWIlg;
— case 0x01: service SWI2(0);
Oxlc| to F_Handler (FIQ) case 0x02: service:SWIS();
}
MOVS pc, Ir

The ARM Architecture 78

PSR Transfer Instructions

31 28 27 24 23 16 15 8 7 6 5 4 0
INIZICIVQ JI U n d e f|i n e d IIIFT mode
|

]
' f S ' X ' C

m MRS and MSR allow contents of CPSR / SPSR to be transferred to / from
a general purpose register.

m Syntax:
m MRS{<cond>} Rd,<psr> ; Rd = <psr>
m MSR{<cond>} <psr[_ fTields]>,Rm ; <psr[_fields]> = Rm

where
m <psr> = CPSR or SPSR

m [fields] = any combination of “fsxc’

m Also an immediate form
m MSR{<cond>} <psr_Tields>,#Immediate

m In User Mode, all bits can be read but only the condition flags (_f) can be
written.

The ARM Architecture 79

ARM ARMBranches and Subroutines

m B <label>
m PC relative. £32 Mbyte range.

m BL <subroutine>
m Stores return address in LR
= Returning implemented by restoring the PC from LR
= For non-leaf functions, LR will have to be stacked

funcl func?2

STMFD
sp!,{regs,Ir}

BL funcl BL func2

LDMFD
sp!,{regs,pc}

The ARM Architecture 80

Flow control instructions

Syntax: B{<cond>} label
BL{<cond>} Tlabel
BX{<cond>} Rm
BLX{<cond>} Tlabel | Rm

B | branch pc=1label pc-relative offset within 32MB

BL | branch with link pc = label
[r=address of the next instruction after the BL

BX | branch exchange pc=Rm & Oxfffffffe, T=Rm & 1

BLX | branch exchange with link | pc=label, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
[r=address of the next instruction after the BLX

The ARM Architecture 81

Flow control instructions

m Branch instruction

B label

label :

m Conditional branches

MOV RO, #O
loop: .
ADD RO, RO, #1
CMP RO, #10
BNE loop

The ARM Architecture 82

Branch conditions

Mnemonic Name Condition flags
EQ equal Z

NE not equal z

CS HS carry set/unsigned higher or same C

CC LO carry clear/unsigned lower c

MI minus/negative N

PL plus/positive or zero 1

VS overflow V

VC no overflow %

HI unsigned higher zC

LS unsigned lower or same Zorc

GE signed greater than or equal NV or nv

LT signed less than Nvor nV

GT signed greater than NzV or nzv

LE signed less than or equal Zor Nvor nV
AL always (unconditional) ignored

The ARM Architecture 83

Branches

Branch Interpretation Normal uses
B BAL Unconditional Always take this branch
Always Always take this branch
BEQ Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
BPL Plus Result positive or zero
BMI Minus Result minus or negative
BCC Carry clear Arithmetic operation did not give carry-out
BLO Lower Unsigned comparison gave lower
BCS Carry set Higher Arithmetic operation gave carry-out
BHS Or same Unsigned comparison gave higher or same
BVC Overflow clear Signed integer operation; no overflow occured
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than
BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave lower or same
The ARM Architecture

84

ARMu Branch and link

m BL instruction save the return address to R14 (Ir)

BL sub @ call sub

CMP R1, #5 @ return to here
MOVEQ R1, #O

sub: .. @ sub entry point

MOV PC, LR @ return

The ARM Architecture 85

ARMm Branch and link

BL subl @ call subl

use stack to save/restore the return address and registers

subl: STMFD R13!, {RO-R2,R14}
BL sub?2

LDMFD R13!, {RO-R2,PC}

MOV PC, LR

The ARM Architecture 86

Conditional execution

CMP RO, #5

BEQ bypass @ 1f (RO!'=5) {
ADD R1, R1, RO @ R1=R1+RO-R2
SUB R1, R1, R2 @ }

smaller and faster
CMP RO, #5

ADDNE R1, R1, RO
SUBNE R1, R1, R2

Rule of thumb: If the conditional sequence is three instructions
or less, it is better to use conditional execution than a branch.

The ARM Architecture 87

ARMu Conditional execution

if ((RO==R1) && (R2==R3)) R4++

CMP RO, R1

BNE skip
CMP R2, R3
BNE skip

ADD R4, R4, #1

CMP RO, R1
CMPEQ R2, R3
ADDEQ R4, R4, #1

The ARM Architecture 88

ARM

Thumb

m Thumb is a 16-bit instruction set
= Optimised for code density from C code (~65% of ARM code size)
m Improved performance from narrow memory
m Subset of the functionality of the ARM instruction set

m Core has additional execution state - Thumb
= Switch between ARM and Thumb using BX instruction

ADDS r2,r2.,#1

32-bit ARM Instruction

> 4

ADD r2,#1

16-bit Thumb Instruction

The ARM Architecture

For most instructions generated by compiler:

Conditional execution is not used

Source and destination registers identical
Only Low registers used

Constants are of limited size

Inline barrel shifter not used

Thumb Benefits

) Source armce b E:t;r; E:' tee
m Thumb programs typically are: Code A
m ~30% smaller than ARM e
programs _ ! _
. iabs CMP r0, #0 ks CMP r0,#0
m ~30% faster when accessing 16- Assembly RSBLT r0,r0,#0 BGE refurn
bit memory Code Moy pe, I MEG rO,r0
return MOY pe, e
m Thumb reduces 32-bit systemto ________ o o T _
16'b|t COSt: Zode Instruction | Size (Bytes) | NMormalized
= Consumes less power ~30% comparison |___ARM : 12 1.0
. Thurrkb 4 8 06T
m Requires less external memory
g;.\atgl; i Decode stage ;Execute
\
: 32-bj_t data Mux |
m But, can be slower than ARM -+ —> |
. . i
= ~40% more instructions - . |
= 32-bit memory: ARM code is 40% | SR I — |
faster than Thumb code. i eeton s |
= 16-bit memory: Thumb code is | . ARM
0 | — instruction —’—b
45% faster than ARM code. B ™ decode | |
! |
! Thumb state 1

The ARM Architecture 90

Introduction

Programmers Model
Instruction Sets
m System Design

Development Tools

The ARM Architecture

91

ARM

16 bit RAM

Example ARM-based System

8 bit ROM

The ARM Architecture

32 bit RAM

Interrupt

Controller

Peripherals

1/O

92

ARM

TIC Remap/
External Bus Interface Pause
2{@]\Y] External
| Bus
Interface '
External
RAM On-chip

Decoder RAM

Interrupt

Controller

- AHB or ASB S APB S
System Bus Peripheral Bus
m AMBA m ACT
= Advanced Microcontroller Bus = AMBA Compliance Testbench
Architecture
s ADK m PrimeCell

= Complete AMBA Design Kit = ARM’'s AMBA compliant peripherals

The ARM Architecture 93

Introduction

Programmers Model
Instruction Sets
System Design

m Development Tools

The ARM Architecture

94

ARM The RealView Product Families

Compilation Tools Debug Tools Platforms
ARM Developer Suite (ADS) — AXD (part of ADS) ARMulator (part of ADS)
Compilers (C/C++ ARM & Thumb), 1race Debug Tools Integrator™ Family

Linker & Utilities .
Multi-ICE

Multi-Trace

RealView Compilation Tools (RVCT) RealView Debugger (RVD) RealView ARMulator ISS (RVISS)
RealView ICE (RVI)

RealView Trace (RVT)

The ARM Architecture 95

ADS & RealView (ARM)

ARM RealView Development Suite v3.0

ARM Developer Suite v1.2.1 CD RealView Development Suite v3.0 CD
ARM Developer Suite] | RealView Compilation Tools v3.0
AXD Debugger v1.2 AI[].Elelfulir]ger Heal'l.n're-:l.- Debugger
e — e '-'1-...1.f ".'3.':]

WD 10 yom G ok G b

MU RA L HEREETA I GE L REE - (NED SO L o Fmw |

N e —]

e o ARMulator RealView ARMulator 1SS v1.4.1

PR _TRoaLrn ()
B Dralag 1206 ¢
1

To AXD debuggers or

RealView RVD debugger To RealView RVD debugger

B

’ reofar s v BT
(S8 0 00| DAEIFITEIS BaEIFITE 1| BaEHITE LS| DnEISITIL
E#N GNSEE | PALE LR I TJonti0tas QuEINITIL GeEiAMN0Y DaEIHITEIS MEIFITRLS
ABCHO020) DuOBIE M Gu ORDSRIEIE | DI CHRIEBC B I CHIIAN
800G QuORtRICad, SmORORETIG | SmOd et | CeEAFTFTTE.
A8CH00% DEATTITIE S=EATTITTE SaCAFTTTTE SxEAFTTTTT
RTHO0T DEATSD00D DuEATSATIE DeEIOMTEIS feEISIOCHE

Jd
=l
B Paraliel
= 2 i —r 5 = T
B s 5 Multi-ICE 1 e RealView ICE
St = s o o % Bt it | Ethernet -
Hi sy = i §
[t el e Julti Tyl ' :
e MultiTrace RealView Trace

Debug Hardware

The ARM Architecture 96

ARM Debug Architecture

On-Chip
Memory 5
ARM CPU RAM = [Address »
: HAG Macrocell l ‘ =
— Ermulation EmbeddedICE S [oy
5
On-Chip é -
Memory
Trace ROM
| Trace Port Port Em_l_?ggceied
Analyzer Macrocell
Host Computer 1/0
=
Trace Debug
Tools
m EmbeddedICE Logic m Embedded trace Macrocell (ETM)
= Provides breakpoints and m Compresses real-time instruction and data
processor/system access access trace
. m Contains ICE features (trigger & filter logic
m JTAG interface (ICE) (trigg gic)
= Converts debugger commands to = Trace port analyzer (TPA)
JTAG signals m Captures trace in a deep buffer

The ARM Architecture 97

