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ARM Ltd
Founded in November 1990

Spun out of Acorn Computers

Designs the ARM range of RISC processor 
cores

Licenses ARM core designs to semiconductor 
partners who fabricate and sell to their p
customers.

ARM does not fabricate silicon itself

Also develop technologies to assist with the 
design-in of the ARM architecture

Software tools, boards, debug hardware, 
application software, bus architectures, 
peripherals etc
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Why ARM?

One of the most licensed and thus widespread processor cores in the 
world

Used in PDA, cell phones, multimedia players, handheld game console, digital 
TV and cameras
ARM7: GBA, iPod
ARM9: NDS, PSP, Sony Ericsson, BenQ
ARM11: Apple iPhone, Nokia N93, N800
75% of 32-bit embedded processors

Used especially in portable devices due to its low power consumption 
and reasonable performance
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ARM Powered Products
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ARM processors

A simple but powerful designA simple but powerful design

A whole family of designs sharing similar design principles and a 
common instruction set
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Naming ARM

ARMxyzTDMIEJFS
x: series
y: MMU
z: cache
T: Thumb
D: debugger
M: Multiplier
I: EmbeddedICE (built-in debugger hardware)
E: Enhanced instruction
J: Jazelle (JVM)
F: Floating-point
S: Synthesizible version (source code version for EDA tools)
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Popular ARM architectures

ARM7TDMI
3 pipeline stages (fetch/decode/execute)p p g ( )
High code density/low power consumption
One of the most used ARM-version (for low-end systems)
All ARM cores after ARM7TDMI include TDMI even if they do not include TDMI y
in their labels

ARM9TDMI
Compatible with ARM7Compatible with ARM7
5 stages (fetch/decode/execute/memory/write)
Separate instruction and data cache

ARM11
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ARM family comparison

year                        1995                   1997                   1999                 2003
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ARM is a RISC

RISC: simple but powerful instructions that execute within a single 
l t hi h l k dcycle at high clock speed.

Four major design rules:
Instructions: reduced set/single cycle/fixed lengthg y g
Pipeline: decode in one stage/no need for microcode
Registers: a large set of general-purpose registers
Load/store architecture: data processing instructions apply to registers only; p g pp y g y
load/store to transfer data from memory

Results in simple design and fast clock rate

The distinction blurs because CISC implements RISC concepts
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ARM design philosophy

Small processor for lower power consumption (for embedded system)

High code density for limited memory and physical size restrictionsHigh code density for limited memory and physical size restrictions

The ability to use slow and low-cost memory

Reduced die size for reducing manufacture cost and accommodating g g
more peripherals
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ARM features

Different from pure RISC in several ways:Different from pure RISC in several ways:
Variable cycle execution for certain instructions: multiple-register load/store 
(faster/higher code density)
Inline barrel shifter leading to more complex instructions: improvesInline barrel shifter leading to more complex instructions: improves 
performance and code density
Thumb 16-bit instruction set: 30% code density improvement
Conditional execution: improve performance and code density by reducingConditional execution: improve performance and code density by reducing 
branch
Enhanced instructions: DSP instructions
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ARM architecture
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ARM architecture

Load/store architecture

A large array of uniform registersA large array of uniform registers

Fixed-length 32-bit instructions

3-address instructions 3 add ess st uct o s
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ARM family comparison

Wake-up Interrupt
Controller

Nested Vectored 
Interrupt Controller 

Controller

15TM 15The ARM Architecture



ARM Cortex

ARMv7 architecture 
Thumb-2 technologyThumb 2 technology

optimized, mixed 16/32-bit instruction set 
the performance advantages of the 32-bit 
ARM ISA with the code size advantages of 
the16-bit Thumb ISA

NEON™ technology 
increase DSP and media processing 
throughput
offers improved floating point support to 

dd th d f t ti 3Daddress the needs of next generation 3D 
graphics and games physics.

ARM Cortex-A Series:
Applications processors for complex OS and pp p p
user applications

ARM Cortex-R Series:
Embedded processors for real-time signal 
processing and control applicationsprocessing and control applications

ARM Cortex-M Series:
Deeply embedded processors optimized for 
microcontroller and low-power applications
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ARM Cortex

17TM 17The ARM Architecture



Cortex-A8

Highest performance Cortex-A 
processor

Symmetric, superscalar pipelineSymmetric, superscalar pipeline 
for full dual-issue capability: 2 
DMIPS/MHz
Thumb-2 ISA for performance p
and code density
TrustZone extensions for secure 
transactions and DRM
NEON multimedia and signal 
processing unit delivers over 2x 
performance of ARMv6 SIMD
I t t d L2 C h ithIntegrated L2 Cache with 
configurable size and ECC
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Cortex-A9

Optimized Cortex-A processor enabling 
breakthrough performance and power 
scalability

2nd generation 1-4X SMP technology
Delivered as Uniprocessor and 1-4X MP
Advanced pipeline delivering ~25% moreAdvanced pipeline delivering ~25% more 
DMIPS/MHz over Cortex-A8 (2.5)
Comparable FMAX to fully synthesized 
Cortex-A8 in same configurationg
Optimized floating-point unit; NEON engine

New system-level integration features for 
design optimizationg p

Accelerator coherence port
Advanced bus interface unit for maximum 
throughput
G li d i t t t l d di t ib tiGeneralized interrupt control and distribution 
system

Suitable for high-end enterprise 
t ki th h t i l h d t
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Cortex-A9
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ARM-based 
Application ProcessorsApplication Processors
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ARM-based 
Application ProcessorsApplication Processors

22TM 22The ARM Architecture



iPad’s A4

A4 is a System-on-a-Chip, or SOC, that 
i t t th i [ARM C t A9integrates the main processor [ARM Cortex-A9 
MPCore i.e. Multi-Processing Core, identical 
to ones used in nVidia Tegra and Qualcomm 
Snapdragon] with graphics silicon [ARM Mali 
50 S i GPU] d th f ti lik th50-Series GPU], and other functions like the 
memory controller on one piece of silicon –
not unlike what Intel is trying to achieve 
with its future “Moorestown” Atom processor 
that deb ted inside LG’s Smartphonethat debuted inside LG’s Smartphone

iPad doesn't have ARM's next-generationiPad doesn t have ARM s next generation 
Cortex A9 design which supports multicore 
processors. Instead, it is a single-core ARM 
Cortex A8 design which is along the same 
lines as the current iPhone 3GS iPod touchlines as the current iPhone 3GS, iPod touch 
as well as the Palm Pre, Droid, etc. The A4 
is a 1GHz custom SoC with a single Cortex A8 
core and a PowerVR SGX GPU (imagination). 
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Intel’s Atom Processor
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Cortex-R4(F)

High-performance processor optimized for deeply embedded signal-High performance processor optimized for deeply embedded signal
processing and control applications

8-stage superscalar pipeline delivers up to 400MHz+ @ 1.6DMIPS/MHz on 
90nm
Thumb-2 technology, hardware divider
State-of-the-art ECC support in all memories
AMBA 3 AXI slave port for DMA to TCMsp

Fit-for-purpose configurability
Separately configured L1 caches: 0kB, 4-64kB
0 to 3 TCMs of p to 8MB each0 to 3 TCMs of up to 8MB each
8 or 12 regions in MPU, or no MPU
2 – 8 Breakpoints, 1 – 8 Watchpoints
Parity or ECC can be optionally includedParity or ECC can be optionally included
Optional SP-optimized FPU (full IEEE754)
Optional slave port
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Cortex-M3
An ARM7TDMI-S for the 21st century

For extreme cost and power-sensitive 
complex applicationscomplex applications
Comparable or better FMAX and gate count
30% more DMIPS, 28% more geomean 
EEMBC
85% more DMIPS per mW

State-of-the-art functionality
Code everything in C
Thumb-2 ISA → 6X code density, 10X 
perf. vs. 8051
Integrated Nested Vectored Interrupt 
Controller (NVIC) with lowest interruptController (NVIC) with lowest interrupt 
latency of any ARM
Configurable/optional memory protection, 
debug, trace
uA device stand by enabled withuA device stand-by enabled with 
integrated sleep modes, ULL(Ultra-Low 
Leakage) libraries, state retention

Broad adoption within Microcontroller
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Cortex-M1

First ARM processor specifically 
optimized for FPGA

High frequency, low-area soft 
processor for low-cost volume FPGA
Upwards compatible with Cortex-M3 
onwards on ASIC/ASSP/MCU
Capable of up to 200MHz on fast 
FPGA d iFPGA device
Delivers up to 0.8 DMIPS/MHz 
efficiency from TCM

Designed for synthesis on multiple 
FPGA types

Actel ProASIC3, Actel Igloo and Actel 
Fusion
Altera Cyclone-III, Altera Stratix-III
Xilinx Spartan-3, Xilinx Virtex-5
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Mali-400 MP GPU

Pioneering Scalable Multicore Processor (MP) GPU
Scalable architecture builds on ARM MPCore™ experienceScalable architecture builds on ARM MPCore  experience

Lowest memory bandwidth usage in the industry = lowest power
Performance scalability to satisfy future display requirements

…from WVGA feature phone to 1080p HDTVp p
Power and area scale to meet market needs
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Mali-400 MP GPU

Power-efficient
Memory bandwidth is the #1 power drain in graphics
Mali-400 MP GPU reduces memory bandwidth and lowers power

Combines best of immediate-mode and tile-based rendering
Shared L2 cache with unified memory access
Multiple levels of power gating supported
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Mali-400 MP GPU
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Data Sizes and Instruction Sets

The ARM is a 32-bit architecture.

Wh d i l ti t th ARMWhen used in relation to the ARM:
Byte means 8 bits
Halfword means 16 bits (two bytes)
W d 32 bit (f b t )Word means 32 bits (four bytes)

Most ARM’s implement two instruction setsp
32-bit ARM Instruction Set
16-bit Thumb Instruction Set

Jazelle cores can also execute Java bytecode
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Processor Modes

The ARM has seven basic operating modes:

User : unprivileged mode under which most tasks run

FIQ : entered when a high priority (fast) interrupt is raised

IRQ : entered when a low priority (normal) interrupt is raisedQ p y ( ) p

Supervisor : entered on reset and when a Software Interrupt 
instruction is executed

Abort : used to handle memory access violations

Undef : used to handle undefined instructions

System : privileged mode using the same registers as user mode
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The ARM Register Set

Current Visible RegistersCurrent Visible RegistersCurrent Visible RegistersCurrent Visible RegistersCurrent Visible RegistersCurrent Visible Registers
r0
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r2

Current Visible Registers
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Register Organization Summary
FIQ

r0

User IRQ UndefSVC Abort

User
mode

r0-r7,
r15,

r1

r2

r3

r4 User UserUser Userr15,
and
cpsr

88

r4

r5

r6

r7

User
mode

r0-r12,
r15,
and

User
mode

r0-r12,
r15,
and

User
mode

r0-r12,
r15,
and

User
mode

r0-r12,
r15,
and

Thumb state
Low  registers

r8

r9

r10

r11

r8

r9

r10

r11

cpsr cpsrcpsr cpsr

Thumb state
High registers

r12

r13 (sp)

r14 (lr)

r12

r13 (sp)

r14 (lr)

r15 (pc)

r13 (sp)
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r13 (sp)
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The Registers

ARM has 37 registers all of which are 32-bits long.
1 dedicated program counter
1 dedicated current program status register
5 dedicated saved program status registers
30 general purpose registers

The current processor mode governs which of several banks isThe current processor mode governs which of several banks is 
accessible. Each mode can access 

a particular set of r0-r12 registers
a particular r13 (the stack pointer sp) and r14 (the link register lr)a particular r13 (the stack pointer, sp) and r14 (the link register, lr)
the program counter, r15 (pc)
the current program status register, cpsr

Privileged modes (except System) can also access
a particular spsr (saved program status register)
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Program Status Registers

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

U n d e f i n e dJ

Condition code flags
N = Negative result from ALU

Interrupt Disable bits.
I = 1: Disables the IRQ

N Z C V Q I F T mode

f s x c

U  n  d  e  f  i  n  e  dJ

N = Negative result from ALU 
Z = Zero result from ALU
C = ALU operation Carried out
V = ALU operation oVerflowed

I  = 1: Disables the IRQ.
F = 1: Disables the FIQ.

T Bit

Sticky Overflow flag - Q flag
Architecture 5TE/J only

T Bit
Architecture xT only
T = 0: Processor in ARM state
T = 1: Processor in Thumb state

Architecture 5TE/J only
Indicates if saturation has occurred

Mode bits
SpecifyJ bit

Architecture 5TEJ only
J = 1: Processor in Jazelle state

Specify
the processor
mode
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Program Counter (r15)

When the processor is executing in ARM state:
All i t ti 32 bit idAll instructions are 32 bits wide
All instructions must be word aligned
Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as 
instruction cannot be halfword or byte aligned)instruction cannot be halfword or byte aligned).

When the processor is executing in Thumb state:When the processor is executing in Thumb state:
All instructions are 16 bits wide
All instructions must be halfword aligned
Therefore the pc value is stored in bits [31:1] with bit [0] undefined (asTherefore the pc value is stored in bits [31:1] with bit [0] undefined (as 
instruction cannot be byte aligned).

When the processor is executing in Jazelle state:
All instructions are 8 bits wide
Processor performs a word access to read 4 instructions at once
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Exception Handling

When an exception occurs the ARM:When an exception occurs, the ARM:
Copies CPSR into SPSR_<mode>
Sets appropriate CPSR bits 

Change to ARM stateChange to ARM state
Change to exception mode 
Disable interrupts (if appropriate)

Stores the return address in LR <mode>

FIQ
IRQ

(Reserved)

0x1C
0x18

0x14Stores the return address in LR_<mode>
Sets PC to vector address

To return, exception handler needs to:
R t CPSR f SPSR d

Data Abort
Prefetch Abort
Software Interrupt

0x10
0x0C

0x08

Vector Table

Restore CPSR from SPSR_<mode>
Restore PC from LR_<mode>

This can only be done in ARM state.

Undefined Instruction

Reset
0x04

0x00

Vector Tabley

Vector table can be at 
0xFFFF0000 on ARM720T

and on ARM9/10 family devices
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Development of the
ARM ArchitectureARM Architecture

1
Halfword 
and signed 
halfword / 

4
Improved 
ARM/Thumb 
Interworking

CLZ

5TE 5TEJ
Jazelle

Java bytecode
execution

SA-110

byte support

System 
mode2

SA 1110

CLZ 

Saturated maths

DSP multiply-

ARM9EJ-S

ARM7EJ S

ARM926EJ-S

ARM1026EJ S

Thumb

SA-1110 p y
accumulate 
instructions

ARM1020E
3

ARM7EJ-S

6

ARM1026EJ-S

SIMD Instructions

ARM7TDMI

4T
Thumb 
instruction 
set

ARM9TDMI

XScale

ARM9E S

Early ARM 
architectures

6Multi-processing

V6 Memory 
architecture (VMSA)ARM7TDMI ARM9TDMI

ARM720T ARM940T

ARM9E-S

ARM966E-S ARM1136EJ-S
Unaligned data 
support
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Conditional Execution and Flags

ARM instructions can be made to execute conditionally by postfixing 
fthem with the appropriate condition code field.

This improves code density and performance by reducing the number of 
forward branch instructions.
CMP 3 #0 CMP 3 #0CMP   r3,#0                           CMP   r3,#0
BEQ   skip                            ADDNE r0,r1,r2
ADD   r0,r1,r2

skip

By default, data processing instructions do not affect the condition code 
flags but the flags can be optionally set by using “S” CMP does notflags but the flags can be optionally set by using “S”.  CMP does not 
need “S”.

loop
…

d t 1 d t flSUBS r1,r1,#1
BNE loop if Z flag clear then branch 

decrement r1 and set flags 
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Setting the condition codes

Any data processing instruction can set the condition codes if the 
i h it tprogrammers wish it to

64 bit addition
R1 R0

64-bit addition

S 2 2 0
R3 R2+

ADDS R2, R2, R0

ADC   R3, R3, R1
R3 R2
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Condition Codes 

The possible condition codes are listed below:

S ffi D i ti Fl t t d

The possible condition codes are listed below:
Note AL is the default and does not need to be specified 

Not equal
Unsigned higher or same

EqualEQ
NE
CS/HS

Suffix Description

Z=0
C=1

Z=1
Flags tested

Unsigned lower
Minus

Overflow
Positive or Zero

CC/LO

PL
VS

MI
C=0
N=1
N=0
V=1Overflow

No overflow
Unsigned higher
Unsigned lower or same
Greater or equal

S

HI
LS
GE

VC
V 1
V=0
C=1 & Z=0
C=0 or Z=1
N=V

Less than
Greater than
Less than or equal
Al

Greater or equalGE
LT
GT
LE
AL

N=V
N!=V
Z=0 & N=V
Z=1 or N=!V

44TM 44The ARM Architecture

AlwaysAL



Examples of conditional 
executionexecution

Use a sequence of several conditional instructions 
if (a==0) func(1);if (a==0) func(1);

CMP      r0,#0
MOVEQ    r0,#1
BLEQ     func

Set the flags, then use various condition codes
if (a==0) x=0;
if (a>0)  x=1;

CMP      r0,#0
MOVEQ    r1,#0
MOVGT 1 #1MOVGT    r1,#1

Use conditional compare instructions
if (a==4 || a==10) x=0;

CMP      r0,#4
CMPNE    r0,#10
MOVEQ r1 #0

45TM 45The ARM Architecture

MOVEQ    r1,#0



Branch instructions

Branch : B{<cond>} label

Branch with Link : BL{<cond>} subroutine_label

2831 24 0

Cond       1   0   1   L                                                      Offset              

Link bit 0 = Branch

232527

Condition field

Link bit 0 = Branch
1 = Branch with link

The processor core shifts the offset field left by 2 positions sign-extendsThe processor core shifts the offset field left by 2 positions, sign-extends 
it and adds it to the PC
± 32 Mbyte range
How to perform longer branches?
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Data processing Instructions

Consist of :
Arithmetic: ADD ADC SUB SBC RSB RSCArithmetic: ADD ADC SUB SBC RSB RSC
Logical: AND ORR EOR BIC
Comparisons: CMP CMN TST TEQ
Data movement: MOV MVNData movement: MOV MVN

These instructions only work on registers,  NOT  memory.

Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

Comparisons set flags only - they do not specify Rdp g y y p y
Data movement does not specify Rn

Second operand is sent to the ALU via barrel shifter.
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Data processing Instructions

Arithmetic Operations Bit-wise Logical Operations
ADD r0, r1, r2 r0 := r1 + r2
ADC r0, r1, r2 r0 := r1 + r2 + C
SUB 0  1  2 0  1 2

AND r0, r1, r2 r0 := r1 and r2
ORR r0, r1, r2 r0 := r1 or r2
EOR 0  1  2 0  1  2SUB r0, r1, r2 r0 := r1 - r2

SBC r0, r1, r2 r0 := r1 - r2 + C - 1
RSB r0, r1, r2 r0 := r2 – r1

EOR r0, r1, r2 r0 := r1 xor r2
BIC r0, r1, r2 r0 := r1 and (not) r2

RSB r0, r1, r2 r0 :  r2 r1
RSC r0, r1, r2 r0 := r2 – r1 + C - 1

R i t M tRegister Movement
MOV r0, r2 r0 := r2
MVN r0  r2 r0 := not r2

Comparison Operations
CMP r1, r2 set cc on r1 - r2
CMN r1  r2 set cc on r1 + r2MVN r0, r2 r0 := not r2 CMN r1, r2 set cc on r1 + r2
TST r1, r2 set cc on r1 and r2
TEQ r1, r2 set cc on r1 xor r2

48TM 48The ARM Architecture

Q ,



The Barrel Shifter
LSL : Logical Left Shift ASR: Arithmetic Right Shift

DestinationCF 0 Destination CF

Multiplication by a power of 2 Division by a power of 2, 
preserving the sign bitp g g

LSR : Logical Shift Right ROR: Rotate Right

Destination CF...0 Destination CF

Division by a power of 2 Bit rotate with wrap aroundy p p
from LSB to MSB

RRX: Rotate Right Extended

Destination

Single bit rotate with wrap around

CF
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Single bit rotate with wrap around
from CF to MSB



Shifted register operands
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Logical shift left

C iC 0register

MOV  R0, R2, LSL #2 @ R0:=R2<<2

@ R2 h d@ R2 unchanged

Example: 0…0 0011 0000

Before R2=0x00000030

After  R0=0x000000C0

R2=0x00000030
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Logical shift right

i C0 register

MOV  R0, R2, LSR #2 @ R0:=R2>>2

@ R2 h d@ R2 unchanged

Example: 0…0 0011 0000

Before R2=0x00000030

After  R0=0x0000000C

R2=0x00000030
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Arithmetic shift right

iMSB register C

MOV  R0, R2, ASR #2 @ R0:=R2>>2

@ R2 h d@ R2 unchanged

Example: 1010 0…0 0011 0000

Before R2=0xA0000030

After  R0=0xE800000C

R2=0xA0000030
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Rotate right

iregister

MOV  R0, R2, ROR #2 @ R0:=R2 rotate

@ R2 h d@ R2 unchanged

Example: 0…0 0011 0001

Before R2=0x00000031

After  R0=0x4000000C

R2=0x00000031
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Rotate right extended

iC registerC C

MOV  R0, R2, RRX @ R0:=R2 rotate

@ R2 h d@ R2 unchanged

Example: 0…0 0011 0001

Before R2=0x00000031, C=1

After  R0=0x80000018, C=1

R2=0x00000031
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Using the Barrel Shifter:
The Second Operand

Register, optionally with shift operation
Shift value can be either be:

5 bit unsigned integerOperand Operand 

The Second Operand

5 bit unsigned integer
Specified in bottom byte of another 
register.

Used for multiplication by constant

p
1

p
2

Immediate value
8 bit number, with a range of 0-255.

Barrel
Shifter

, g
Rotated right through even number of 
positions 

Allows increased range of 32-bit 
constants to be loaded directly intoconstants to be loaded directly into 
registers

ALU

Result

ADD r0, r1, r2
ADD r0, r1, r2, LSL#7
ADD r0, r1, r2, LSL r3
ADD r0 r1 #0x4E
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Result ADD r0, r1, #0x4E



Immediate constants (1)

No ARM instruction can contain a 32 bit immediate constant
All ARM instructions are fixed as 32 bits long

The data processing instruction format has 12 bits available for operand2The data processing instruction format has 12 bits available for operand2

0711 8
immed_8rot

Q i k Q i

Shifter
ROR

x2

Quick Quiz:
0xe3a004ff
MOV r0, #???

4 bit rotate value (0 15) is multiplied by two to give range 0 30 in steps of 24 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

Rule to remember is “8-bits shifted by an even number of bit positions”.
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Encoding data processing 
instructionsinstructions

cond 0 0 operand 2# opcode S Rn Rd

31 28 27 26 25 24 21 20 19 16 15 12 11 0

destination register

first operand register

set condition codesset condition codes

arithmetic/logic function

8 bit i di t

25 11 8 7 0

# t 8-bit immediate1 #rot

11 7 6 5 4 3 0

immediate alignment

Rm#shift

0

25

Sh 0

immediate shift length

Rm

0

11 8 7 6 5 4 3 0

Rs 10 Sh

shift type

second operand register
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RmRs 10 Sh

register shift length



Immediate constants (2)

Examples:
031

ror #0   

range 0-0xff000000 step 0x01000000   ror #8   

range 0-0x000000ff step 0x00000001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

range 0-0x000003fc step 0x00000004  ror #30   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The assembler converts immediate values to the rotate form:
MOV r0,#4096 ; uses 0x40 ror 26
ADD r1,r2,#0xFF0000 ; uses 0xFF ror 16, ,# ;

The bitwise complements can also be formed using MVN:
MOV r0, #0xFFFFFFFF ; assembles to MVN r0,#0

Values that cannot be generated in this way will cause an error
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Values that cannot be generated in this way will cause an error.



Loading 32 bit constants

To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:

LDR rd, =const

This will either:s e t e
Produce a  MOV or  MVN instruction to generate the value (if possible).

or
Generate a LDR instruction with a PC-relative address to read the constantGenerate a LDR instruction with a PC-relative address to read the constant 
from a literal pool (Constant data area embedded in the code).

For example
LDR r0 =0xFF => MOV r0 #0xFFLDR r0,=0xFF => MOV r0,#0xFF
LDR r0,=0x55555555 => LDR r0,[PC,#Imm12]

…
……
DCD 0x55555555

This is the recommended way of loading constants into a register
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Multiply

Syntax: 
MUL{<cond>}{S} Rd Rm Rs Rd = Rm * RsMUL{<cond>}{S} Rd, Rm, Rs Rd  Rm  Rs
MLA{<cond>}{S} Rd,Rm,Rs,Rn Rd = (Rm * Rs) + Rn
[U|S]MULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs
[U|S]MLAL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

Cycle time
Basic MUL instructionBasic MUL instruction

2-5 cycles on ARM7TDMI
1-3 cycles on StrongARM/XScale
2 cycles on ARM9E/ARM102xEy

+1 cycle for ARM9TDMI (over ARM7TDMI)
+1 cycle for accumulate (not on 9E though result delay is one cycle longer)
+1 cycle for “long”y g

Above are “general rules” - refer to the TRM for the core you are using 
for the exact details

61TM 61The ARM Architecture
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Multiplication

Multiply-accumulate (2D array indexing)
MLA  R4, R3, R2, R1  @ R4 = R3xR2+R1

Multiply with a constant can often be more efficiently implemented using 
shifted register operandshifted register operand  

MOV  R1, #35

MUL  R2, R0, R1, ,

or
ADD  R0, R0, R0, LSL #2  @ R0’=5xR0

RSB  R2, R0, R0, LSL #3  @ R2 =7xR0’
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Single register data transfer

LDR STR WordLDR STR Word
LDRB STRB Byte
LDRH STRH Halfword

SLDRSB Signed byte load
LDRSH Signed halfword load

Memory system must support all access sizes

Syntax:
LDR{<cond>}{<size>} Rd, <address>
STR{<cond>}{<size>} Rd, <address>{ }{ } ,

e.g. LDREQB
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Address accessed

Address accessed by LDR/STR is specified by a base register plus an 
offsetoffset
For word and unsigned byte accesses, offset can be

An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
0 1 #8LDR r0,[r1,#8]

A register, optionally shifted by an immediate value
LDR r0,[r1,r2]
LDR r0,[r1,r2,LSL#2],[ , , # ]

This can be either added or subtracted from the base register:
LDR r0,[r1,#-8]
LDR r0,[r1,-r2],[ , ]
LDR r0,[r1,-r2,LSL#2]

For halfword and signed halfword / byte, offset can be:
An unsigned 8 bit immediate value (ie 0-255 bytes)An unsigned 8 bit immediate value (ie 0 255 bytes).
A register (unshifted).

Choice of pre-indexed or post-indexed addressing
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Pre or Post Indexed Addressing?

r0 SourceOffset
Pre-indexed: STR r0,[r1,#12]

0x5

r1

0x5
Source

Register
for STR

Offset
12 0x20c

0x200Base
Register 0x200

A t d t f STR 0 [ 1 #12]!Auto-update form: STR r0,[r1,#12]!

Post-indexed: STR r0,[r1],#12

r0 Source

Offset
12 0x20c

r1
0x20c

Updated
Base

Register

0x5
r1

0x200

Original
Base

Register
0x200

0x5 Register
for STR
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LDM / STM operation

Syntax:
<LDM|STM>{<cond>}<addressing mode> Rb{!} <register list><LDM|STM>{<cond>}<addressing_mode> Rb{!}, <register list>

4 addressing modes:
LDMIA / STMIA increment after
LDMIB / STMIB increment before
LDMDA / STMDA decrement after
LDMDB / STMDB decrement before

IA

4 1
r4

IB DA DB
LDMxx r10, {r0,r1,r4}
STMxx r10, {r0,r1,r4}

r1 Increasing
Address

r4

r0

r1
r0

r4r10

, { , , }

Base Register (Rb)
r1
r0 r1

r4

r0
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LDM / STM operation

r9’ 1018 r5r9’ 1018

r5
r1

r9’

r0r9 100c16

101816 r5
r1
r0

r9’

r9 100c16

101816

100016 100016

STMIA r9!, {r0,r1,r5}

101816 101816

STMIB r9!, {r0,r1,r5}

r1
r5r9 100c16

6

r5
r9 100c16

6

r1

STMDA r9! {r0 r1 r5}

r0
r9’ 100016

r5

STMDB r9! {r0 r1 r5}

r1
r0r9’ 100016
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STMDA r9!, {r0,r1,r5} STMDB r9!, {r0,r1,r5}



The mapping between the stack 
and block copy viewsand block copy views

As cendi ng Des cendi ng
Ful l Empty Ful l EmptyFul l Empty Ful l Empty

Increment
Befo re STMIB

STMFA
LDMIB
LDMED

After STMIA LDMIAAfter STMIA
STMEA

LDMIA
LDMFD

Decrement
Befo re LDMDB

LDMEA
STMDB
STMFD

After LDMDA
LDMFA

STMDA
STMED
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Software Interrupt (SWI)
2831 2427 0

Cond      1   1  1   1 SWI number (ignored by processor)

23

Condition Field

Causes an exception trap to the SWI hardware vector 

The SWI handler can examine the SWI number to decide what operation 
has been requested.

By using the SWI mechanism an operating system can implement a setBy using the SWI mechanism, an operating system can implement a set 
of privileged operations which applications running in user mode can 
request.

Syntax:
SWI{<cond>} <SWI number>
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What do SWIs do? 

SWIs (often called software traps) allow a user program to “call” the OS -- 
that is, SWIs are how system calls are implemented. 

When SWIs execute, the processor changes modes (from User to 
Supervisor mode on the ARM) and disables interrupts. 
Types of SWIs in ARM Angel (axd or armsd)Types of SWIs in ARM Angel (axd or armsd)

SWI_WriteC(SWI 0) Write a byte to the debug channel 
SWI_Write0(SWI 2) Write the null-terminated string to debug channel 
SWI ReadC(SWI 4) Read a byte from the debug channelSWI_ReadC(SWI 4) Read a byte from the debug channel 
SWI_Exit(SWI 0x11) Halt emulation - this is how a program exits 
SWI_EnterOS(SWI 0x16) Put the processor in supervisor mode 
SWI Clock(SWI 0x61) Return the number of centi-seconds _ ( )
SWI_Time(SWI 0x63) Return the number of secs since Jan. 1, 1970
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What Happens on an SWI? (1)

The ARM architecture defines a Vector Table indexed by exception 
type 
One SWI, CPU does the following: PC <--0x08

Also, sets LR_svc, SPSR_svc, CPSR (supervisor mode, no IRQ) 

1

USER Program to R Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
ADD  r0,r0,r1 
SWI  0x10 
SUB  r2,r2,r0

_
to U_Handler
to S_Handler
to P_Handler
to D_Handler

0x04
0x08
0x0c
0x10

(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

SWI Handler
1

_
... 
to I_Handler
to F_Handler

0x14
0x18
0x1c

(Reserved)
(IRQ)
(FIQ)
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What Happens on an SWI? (2)

Not enough space in the table (only one instruction per entry) to hold all 
of the code for the SWI handler function 

This one instruction must transfer control to appropriate SWI Handler 

Several options are presented in the next slide

2

p p

USER Program to R Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
ADD  r0,r0,r1 
SWI  0x10 
SUB  r2,r2,r0

_
to U_Handler
to S_Handler
to P_Handler
to D_Handler

0x04
0x08
0x0c
0x10

(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

SWI Handler2

_
... 
to I_Handler
to F_Handler

0x14
0x18
0x1c

(Reserved)
(IRQ)
(FIQ)
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“Vectoring” Exceptions to Handlers 

Option of choice: Load PC from jump table (shown below) 

Another option: Direct branch (limited range)

Vector Table (spring board)
starting at 0x00 in memory

ADD  r0,r0,r1 
SWI  0x10 

2 2 0

USER Program LDR pc, [pc, 0x100]
LDR pc, [pc, 0x100]
LDR pc, [pc, 0x100]

[ 0 100]

starting at 0x00 in memory
0x00
0x04
0x08
0 0

SWI Handler
(S_Handler)2

SUB  r2,r2,r0 LDR pc, [pc, 0x100]
LDR pc, [pc, 0x100]
LDR pc, [pc, 0x100]
LDR pc, [pc, 0x100]
LDR [ 0 100]

0x0c
0x10
0x14
0x18
0 1 LDR pc, [pc, 0x100]0x1c

“Jump” Table
&A_Handler 
&U_Handler 
&S_Handler 
&P_Handler

0x108
0x10c
0x110
0x114

Why 0x110?
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What Happens on SWI Completion? 

Vectoring to the S_Handler starts executing the SWI handler 

When the handler is done, it returns to the program -- at the instruction 
following the SWI

MOVS restores the original CPSR as well as changing pc 3g g g p

USER Program to R Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
SWI Handler
(S Handler)ADD  r0,r0,r1 

SWI  0x10 
SUB  r2,r2,r0

_
to U_Handler
to S_Handler
to P_Handler
to D_Handler

0x04
0x08
0x0c
0x10

(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

(S_Handler)

_
... 
to I_Handler
to F_Handler

0x14
0x18
0x1c

(Reserved)
(IRQ)
(FIQ)

3 MOVS  pc, lr
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How Do We Determine the SWI 
number? u be

All SWIs go to 0x08

USER Program to R Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
SWI Handler
(S Handler)ADD  r0,r0,r1 

SWI  0x10
SUB  r2,r2,r0

_
to U_Handler
to S_Handler
to P_Handler
to D_Handler

0x04
0x08
0x0c
0x10

(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

SWI Handler must 
serve as clearing

(S_Handler)

_
... 
to I_Handler
to F_Handler

0x14
0x18
0x1c

(Reserved)
(IRQ)
(FIQ)

house for different
SWIs

MOVS  pc, lr
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SWI Handler Uses the “Comment” Field 

On SWI, the processor
(1) copies CPSR to SPSR_SVC
(2) set the CPSR mode bits to supervisor mode 24-bit “comment” field (ignored by processor)1 1 1 1cond(2) set the CPSR mode bits to supervisor mode 
(3) sets the CPSR IRQ to disable 
(4) stores the value (PC + 4) into LR_SVC
(5) forces PC to 0x08

( g y p )

( )

USER Program to R Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
SWI Handler
(S Handler)ADD  r0,r0,r1 

SWI  0x10 
SUB  r2,r2,r0

_
to U_Handler
to S_Handler
to P_Handler
to D_Handler

0x04
0x08
0x0c
0x10

(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

LDR r0,[lr,#-4]
BIC r0 r0 #0xff000000

(S_Handler)

_
... 
to I_Handler
to F_Handler

0x14
0x18
0x1c

(Reserved)
(IRQ)
(FIQ)

BIC r0,r0,#0xff000000

R0 holds SWI number

MOVS  pc, lr
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Use The SWI # to Jump to “Service 
Routine”

On SWI, the processor
(1) copies CPSR to SPSR_SVC
(2) t th d bit t i d 24 bit “comment” field (ignored by processor)1 1 1 1cond(2) set the CPSR mode bits to supervisor mode 
(3) sets the CPSR IRQ to disable 
(4) stores the value (PC + 4) into LR_SVC
(5) forces PC to 0x08

24-bit comment  field (ignored by processor)1 1 1 1cond

(5) forces PC to 0x08

USER Program to R Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
SWI Handler
(S dl )ADD  r0,r0,r1 

SWI  0x10 
SUB  r2,r2,r0

to R_Handler
to U_Handler
to S_Handler
to P_Handler
to D Handler

0x00
0x04
0x08
0x0c
0x10

(Reset
(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

LDR r0,[lr,#-4]
BIC r0,r0,#0xff000000

(S_Handler)

to D_Handler
... 
to I_Handler
to F_Handler

0x10
0x14
0x18
0x1c

(Data abort)
(Reserved)
(IRQ)
(FIQ)

switch (r0){ 
case 0x00: service_SWI1(); 
case 0x01: service_SWI2(); 
case 0x02: service_SWI3();
…
}
MOVS  pc, lr
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Problem with The Current Handler
On SWI, the processor

(1) copies CPSR to SPSR_SVC
(2) set the CPSR mode bits to supervisor 

What was in R0? User program 
may have been using this 
register Therefore cannot just( ) p

mode 
(3) sets the CPSR IRQ to disable 
(4) stores the value (PC + 4) into LR_SVC
(5) forces PC to 0x08

register. Therefore, cannot just 
use it - must first save it 

USER Program to R_Handler

Vector Table (spring board)
starting at 0x00 in memory

0x00 (Reset
SWI Handler
(S Handler)ADD  r0,r0,r1 

SWI  0x10 
SUB  r2,r2,r0

to U_Handler
to S_Handler
to P_Handler
to D_Handler

0x04
0x08
0x0c
0x10

(Undef instr.)
(SWI)
(Prefetch abort)
(Data abort)

LDR r0,[lr,#-4]
BIC r0,r0,#0xff000000

(S_Handler)

... 
to I_Handler
to F_Handler

0x14
0x18
0x1c

(Reserved)
(IRQ)
(FIQ)

switch (r0){ 
case 0x00: service_SWI1(); 
case 0x01: service_SWI2(); 
case 0x02: service_SWI3();
…
}}
MOVS  pc, lr
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PSR Transfer Instructions
2731

N Z C V Q

28 67

I F T    mode

1623 815 5 4 024

U  n  d  e  f  i  n  e  dJ

MRS and MSR allow contents of CPSR / SPSR to be transferred to / from 
a general purpose register

f s x c

a general purpose register.

Syntax:
MRS{<cond>} Rd,<psr>          ; Rd = <psr>
MSR{<cond>} <psr[_fields]>,Rm ; <psr[_fields]> = Rm

where
<psr> = CPSR or SPSR<psr>  CPSR or SPSR
[_fields] = any combination of ‘fsxc’

Also an immediate form
MSR{ d } fi ld #I di tMSR{<cond>} <psr_fields>,#Immediate

In User Mode, all bits can be read but only the condition flags (_f) can be 
written.
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ARM Branches and Subroutines

B <label>
PC relative ±32 Mbyte rangePC relative. ±32 Mbyte range.

BL <subroutine>
Stores return address in LR
Returning implemented by restoring the PC from LR
For non-leaf functions, LR will have to be stacked

func1 func2

STMFD 
sp!,{regs,lr}

func1 func2

: :

:
:

BL func2

:

:

BL func1

:

:

:

:

:
LDMFD 

sp!,{regs,pc}
: :

MOV pc, lr
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Flow control instructions

D t i th i t ti t b t d t
pc-relative offset within 32MB

Determine the instruction to be executed next
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Flow control instructions

Branch instruction

B l b lB label

…

label: …

Conditional branches

MOV  R0, #0

loop: …

ADD  R0, R0, #1

CMP  R0, #10

BNE loop
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BNE loop



Branch conditions
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Branches
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Branch and link

BL instruction save the return address to R14 (lr)

BL    sub     @ call sub

CMP   R1, #5  @ return to here

1 #0MOVEQ R1, #0

…

sub: … @ sub entry point

…

MOV PC, LR @ return
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MOV   PC, LR @ return 



Branch and link

BL    sub1     @ call sub1

…
use stack to save/restore the return address and registers

sub1: STMFD R13!, {R0-R2,R14}

BL    sub2

…

LDMFD R13!, {R0-R2,PC}

sub2:sub2: …

…

MOV PC LR
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Conditional execution

CMP  R0, #5

BEQ b @ if (R0! 5) {BEQ  bypass     @ if (R0!=5) {

ADD  R1, R1, R0 @  R1=R1+R0-R2 

SUB  R1, R1, R2 @ }

bypass: …yp

CMP R0 #5
smaller and faster

CMP   R0, #5

ADDNE R1, R1, R0

SUBNE R1, R1, R2

Rule of thumb: if the conditional sequence is three instructions
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Conditional execution

if ((R0==R1) && (R2==R3)) R4++

CMP   R0, R1
kiBNE   skip

CMP   R2, R3
BNE skipBNE   skip
ADD   R4, R4, #1

skip:skip: …  

CMP R0, R1CMP   R0, R1
CMPEQ R2, R3
ADDEQ R4, R4, #1
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Thumb
Thumb is a 16-bit instruction set

Optimised for code density from C code (~65% of ARM code size)
I d f fImproved performance from narrow memory
Subset of the functionality of the ARM instruction set

Core has additional execution state - Thumb
Switch between ARM and Thumb using BX instruction

31 0ADDS r2,r2,#1

32-bit ARM Instruction For most instructions generated by compiler:
Conditional execution is not used

Source and destination registers identical

Only Low registers used

015 ADD r2,#1

Constants are of limited size

Inline barrel shifter not used
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Thumb Benefits

Thumb programs typically are:
30% smaller than ARM~30% smaller than ARM 

programs
~30% faster when accessing 16-
bit memoryy

Thumb reduces 32-bit system to 
16-bit cost: 

Consumes less power ~30%Consumes less power 30%
Requires less external memory

But, can be slower than ARM
~40% more instructions
32-bit memory: ARM code is 40% 
f t th Th b dfaster than Thumb code.
16-bit memory: Thumb code is 
45% faster than ARM code.
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Programmers Model

I t ti S tInstruction Sets

System Design

Development ToolsDevelopment Tools
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Example ARM-based System

16 bit RAM 32 bit RAM

I/O

Interrupt
Controller

ARM

I/OPeripheralsnFIQnIRQ

8 bit ROM

ARM
Core
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AMBA

ARM

Arbiter Reset

rid
ge

Timer

ARM
Remap/
Pause

TIC
Bus InterfaceExternal

ROM External
Bus

I t f B
r

On-chip
RAM

Interrupt
Controller

External
RAM

Interface

Decoder

System Bus Peripheral Bus

AHB or ASB APB

y p

AMBA
Advanced Microcontroller Bus 

ACT
AMBA Compliance Testbench

Architecture

ADK
Complete AMBA Design Kit

PrimeCell
ARM’s AMBA compliant peripherals

93TM 93The ARM Architecture

Co p e e es g



Agenda

Introduction

Programmers Model

I t ti S tInstruction Sets

System Design

Development ToolsDevelopment Tools

94TM 94The ARM Architecture



The RealView Product Families

Debug Tools PlatformsCompilation Tools Debug Tools
AXD (part of ADS)
Trace Debug Tools

Platforms
ARMulator (part of ADS)
Integrator™ Family

Compilation Tools
ARM Developer Suite (ADS) –
Compilers (C/C++ ARM & Thumb),
Li k & Utiliti

Multi-ICE
Multi-Trace

Linker & Utilities

RealView Compilation Tools (RVCT) RealView Debugger (RVD)

RealView ICE (RVI)

RealView ARMulator ISS (RVISS)
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RealView ICE (RVI)

RealView Trace (RVT)



ADS & RealView (ARM)
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ARM Debug Architecture

EmbeddedICE Logic
Provides breakpoints and

Embedded trace Macrocell (ETM)
Compresses real-time instruction and data Provides breakpoints and 

processor/system access

JTAG interface (ICE)
Converts debugger commands to 

p
access trace
Contains ICE features (trigger & filter logic)

Trace port analyzer (TPA)
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JTAG signals 

p y ( )
Captures trace in a deep buffer


