
1

Understanding The
Linux Virtual Memory Manager

Mel Gorman

22nd January 2003

Contents

1 Introduction 8
1.1 Thesis Overview . 9

2 Code Management 10
2.1 Managing the Source . 10
2.2 Getting Started . 16
2.3 Submitting Work . 17

3 Describing Physical Memory 19
3.1 Nodes . 20
3.2 Zones . 22
3.3 Pages . 24

4 Page Table Management 29
4.1 Describing the Page Directory . 29
4.2 Describing a Page Table Entry . 31
4.3 Using Page Table Entries . 32
4.4 Translating and Setting Page Table Entries 34
4.5 Allocating and Freeing Page Tables 35
4.6 Initialising Kernel Page Tables . 36

5 Boot Memory Allocator 38
5.1 Representing the Boot Map . 38
5.2 Initialising the Boot Memory Allocator 39
5.3 Allocating Memory . 41
5.4 Freeing Memory . 43
5.5 Retiring the Boot Memory Allocator 43

6 Physical Page Allocation 47
6.1 Allocator API . 47
6.2 Managing Free Blocks . 47
6.3 Allocating Pages . 49
6.4 Free Pages . 51
6.5 GFP Flags . 52
6.6 Avoiding Fragmentation . 53

2

CONTENTS 3

7 Non-Contiguous Memory Allocation 57
7.1 Kernel Address Space . 57
7.2 Describing Virtual Memory Areas . 58
7.3 Allocating A Non-Contiguous Area 59
7.4 Freeing A Non-Contiguous Area . 60

8 Slab Allocator 62
8.1 Caches . 64
8.2 Slabs . 72
8.3 Objects . 79
8.4 Sizes Cache . 80
8.5 Per-CPU Object Cache . 82
8.6 Slab Allocator Initialisation . 85
8.7 Interfacing with the Buddy Allocator 85

9 Process Address Space 88
9.1 Managing the Address Space . 88
9.2 Process Address Space Descriptor . 90
9.3 Memory Regions . 95
9.4 Exception Handling . 109
9.5 Page Faulting . 110
9.6 Copying To/From Userspace . 114

10 High Memory Management 119

11 Page Frame Reclamation 120
11.1 Page Swap Daemon (kswapd) . 120
11.2 Page Cache . 122
11.3 Shrinking all caches . 123
11.4 Page Hash . 123
11.5 Inode Queue . 123
11.6 Refilling inactive_list . 123
11.7 Reclaiming pages from the page cache 124
11.8 Swapping Out Process Pages . 126

12 Swap Management 129
12.1 Swap Cache . 129

13 Out Of Memory Management 130

List of Figures

2.1 Example Patch . 13

3.1 Relationship Between Nodes, Zones and Pages 20

4.1 Linear Address Bit Size Macros . 30
4.2 Linear Address Size and Mask Macros 30
4.3 Page Table Layout . 32
4.4 Call Graph: paging_init . 36

5.1 Call Graph: setup_memory . 40
5.2 Call Graph: __alloc_bootmem . 41
5.3 Call Graph: mem_init . 44

6.1 Free page block management . 49
6.2 Call Graph: alloc_pages . 50
6.3 Allocating physical pages . 50
6.4 Call Graph: __free_pages . 51

7.1 Kernel Address Space . 58
7.2 VMalloc Address Space . 59
7.3 Call Graph: vmalloc . 59
7.4 Call Graph: vfree . 60

8.1 Layout of the Slab Allocator . 63
8.2 Call Graph: kmem_cache_create . 70
8.3 Call Graph: kmem_cache_reap . 70
8.4 Call Graph: kmem_cache_shrink . 72
8.5 Call Graph: __kmem_cache_shrink 72
8.6 Call Graph: kmem_cache_destroy 73
8.7 Page to Cache and Slab Relationship 74
8.8 Slab With Descriptor On-Slab . 75
8.9 Slab With Descriptor Off-Slab . 76
8.10 Call Graph: kmem_cache_grow . 77
8.11 initialised kmem_bufctl_t Array . 77
8.12 Call Graph: kmem_slab_destroy . 79
8.13 Call Graph: kmem_cache_alloc . 80

4

LIST OF FIGURES 5

8.14 Call Graph: kmalloc . 82
8.15 Call Graph: kfree . 82

9.1 Data Structures related to the Address Space 89
9.2 Memory Region Flags . 98
9.3 Call Graph: sys_mmap2 . 102
9.4 Call Graph: get_unmapped_area . 103
9.5 Call Graph: insert_vm_struct . 104
9.6 Call Graph: sys_mremap . 105
9.7 Call Graph: move_vma . 106
9.8 Call Graph: move_page_tables . 106
9.9 Call Graph: sys_mlock . 107
9.10 Call Graph: do_munmap . 108
9.11 Call Graph: do_page_fault . 112
9.12 do_page_fault Flow Diagram . 116
9.13 Call Graph: handle_mm_fault . 117
9.14 Call Graph: do_no_page . 117
9.15 Call Graph: do_swap_page . 118
9.16 Call Graph: do_wp_page . 118

11.1 Call Graph: kswapd . 121
11.2 Page Cache LRU List . 122
11.3 Call Graph: shrink_caches . 124
11.4 Call Graph: swap_out . 126

13.1 Call Graph: out_of_memory . 130

List of Tables

1.1 Kernel size as an indicator of complexity 8

3.1 Flags Describing Page Status . 27
3.2 Macros For Testing, Setting and Clearing Page Status Bits 28

4.1 Page Table Entry Protection and Status Bits 32

5.1 Boot Memory Allocator API for UMA Architectures 45
5.2 Boot Memory Allocator API for NUMA Architectures 46

6.1 Physical Pages Allocation API . 48
6.2 Physical Pages Free API . 49
6.3 Low Level GFP Flags Affecting Zone Allocation 52
6.4 Low Level GFP Flags Affecting Allocator Behavior 53
6.5 Low Level GFP Flag Combinations For High Level 54
6.6 High Level GFP Flags Affecting Allocator Behavior 55
6.7 Process Flags Affecting Allocator Behavior 56

7.1 Non-Contiguous Memory Allocation API 60
7.2 Non-Contiguous Memory Free API 61

8.1 Slab Allocator API for caches . 86
8.2 Internal cache static flags . 86
8.3 Cache static flags set by caller . 87
8.4 Cache static debug flags . 87
8.5 Cache Allocation Flags . 87

9.1 System Calls Related to Memory Regions 90
9.2 Functions related to memory region descriptors 94
9.3 Memory Region VMA API . 96
9.4 Reasons For Page Faulting . 111
9.5 Accessing Process Address Space API 115

11.1 Page Cache API . 128

6

LIST OF TABLES 7

Abstract

The development of Linux is unusual in that it was built more with an emphasis on
the practical rather than a theoretical one. While many of the algorithms used in
the Virtual Memory (VM) system were designed by theorists, the implementations
have diverged from the theory considerably. Instead of following the traditional
development cycle of design to implementation, changes are made in reaction to
how the system behaved in the “real world” and intuitive decisions by developers.

This has led to a situation where the VM is poorly documented except for a few
general overviews in a small number of books or websites and is fully understood only
by a small number of core developers. Developers looking for information on how
it functions are generally told to read the source. This requires that even a casual
observer invest a large amount of time to read the code. The problem is further
compounded by the fact that the code only tells the developer what is happening
in a very small instance making it difficult to see how the overall system functions
which is roughly analogous to using a microscope to identify a piece of furniture.

As Linux gains in popularity, in the business as well as the academic world, more
developers are expressing an interest in developing Linux to suit their needs and the
lack of detailed documentation is a significant barrier to entry for a new developer
or researcher who wishes to study the VM.

The objective of this thesis is to document fully how the 2.4.20 VM works includ-
ing its structure, the algorithms used, the implementations thereof and the Linux
specific features. Combined with the companion document “Code Commentary on
the Linux Virtual Memory Manager” the documents act as a detailed tour of the
code explaining almost line by line how the VM operates. It will also describe how
to approach reading through the kernel source including tools aimed at making the
code easier to read, browse and understand.

It is envisioned that this will drastically reduce the amount of time a developer
or researcher needs to invest to understand what is happening inside the Linux VM.
This applies even if a later VM than this document describes is of interest to the
reader as the time needed to understand new changes to the VM is considerably less
than what is needed to learn how it works to begin with.

Chapter 1

Introduction

Linux is a relatively new operating system that has begun to enjoy a lot of attention
from the business and academic worlds. As the operating system matures, its feature
set, capabilities and performance grows but unfortunately as a necessary side effect,
so does its size and complexity. The table in Figure 1.1 shows the total gzipped size
of the kernel source code and size in bytes and lines of code of the mm/ part of the
kernel tree. This does not include the machine dependent code or any of the buffer
management code and does not even pretend to be a strong metric for complexity
but still serves as a small indicator.

Version Release Date Tar Size Size of mm/ Line count
1.0 March 13th, 1992 1.2MiB 96k 3109
1.2.13 February 8th, 1995 2.2MiB 136k 4531
2.0.39 January 9th 2001 7.2MiB 204k 6792
2.2.22 September 16th, 2002 14.0MiB 292k 9554
2.4.20 November 28th, 2002 32.0MiB 520k 15428

Table 1.1: Kernel size as an indicator of complexity

As is the habit of Open Source projects in general, new developers are sometimes
told to refer to the source with the polite acronym RTFS1 when questions are asked
or are referred to the kernel newbies mailing list (http://www.kernelnewbies.org).
With the Linux Virtual Memory (VM) manager, this was a suitable response for
earlier kernels as the time required to understand the VM could be measured in
weeks. The books available on the operating system devoted enough time into the
memory management chapters to make the relatively small amount of code easy to
navigate.

This is no longer the case. The books that describe the operating system such
as ‘Understanding the Linux Kernel”[BC00], tend to be an overview of all subsys-
tems without giving specific attention to one topic with the notable exception of
device drivers[RC01]. Increasingly, to get a comprehensive view on how the kernel

1Read The Flaming Source

8

1.1. Thesis Overview 9

functions, the developer or researcher is required to read through the source code
line by line which requires a large investment of time. This is especially true as the
implementations of several VM algorithms diverge from the papers describing them
considerably.

The documentation on the Memory Manager that exists today is relatively poor.
It is not an area of the kernel that many wish to get involved in for a variety of
reasons ranging from the amount of code involved, to the complexity of the subject
of memory management to the difficulty of debugging the kernel with an unstable
VM. In this thesis a comprehensive guide to the VM as implemented in the late
2.4 Kernels is given. A companion document called “Code Commentary On The
Linux Virtual Memory Manager ”, hereafter referred to as the companion document,
provides a detailed tour of the code. It is envisioned that with this pair of documents,
the time required to have a working understanding of the VM, even later VM’s, will
be measured in weeks instead of the estimated 8 months currently required by even
an experienced developer.

1.1 Thesis Overview

In chapter 2, I will go into detail on how the code may be managed and deciphered.
Three tools will be introduced that are used for the analysis, easy browsing and
management of code. The first is a tool called LXR which allows source code to be
browsed as a web page with identifiers and functions highlighted as hyperlinks to
allow easy browsing. The second is a tool called gengraph which was developed for
this project and is used to generate call graphs starting from a particular function
with the ability to limit the depth and what functions are displayed. All the call
graphs shown in these two documents were generated with it. The last is a simple
tool for managing kernels and the application of patches. Applying patches manually
can be time consuming and the use of version control software such as CVS2 or
BitKeeper3 is not always an option. With this tool, a simple spec file can be provided
specifying what source to use, what patches to apply and what kernel configuration
to use.

In the subsequent chapters, each part of the implementation of the Linux VM
will be discussed in detail such as how memory is described in an architecture inde-
pendent manner, how processes manage their memory, how the specific allocators
work and so on. Each will refer to the papers that describe closest the behavior of
Linux as well as covering in depth the implementation, the functions used and their
call graphs so the reader will have a clear view of how the code is structured. For a
detailed examination of the code, the reader is encouraged to consult the companion
document.

2http://www.cvshome.org/
3http://www.bitmover.com

Chapter 2

Code Management

One of the largest initial obstacles to understanding the code is deciding where to
start and how to easily manage, browse and get an overview of the overall code
structure. If requested on mailing lists, people will provide some suggestions on how
to proceed but a comprehensive answer has to be found by each developer on their
own.

The advice that is often given to new developers is to read books on operating
systems, on Linux specifically, visit the kernel newbies website and then read the
code, benchmark the kernel and write a few documents. There is a recommended
reading list provided on the website but there is no set of recommended tools for
analyzing and breaking down the code and while reading the code from beginning to
end is admirable, it is hardly the most efficient method of understanding the kernel.

Hence, this section is devoted to describing what tools were used during the
course of researching this document to make understanding and managing the code
easier and to aid researchers and developers in deciphering the kernel.

2.1 Managing the Source

The mainline or stock kernel is principally distributed as a compressed tape
archive (.tar) file available from the nearest kernel source mirror, in Ireland’s case
ftp://ftp.ie.kernel.org. The stock kernel is always the one considered to be released
by the tree maintainer. For example, at time of writing, the stock kernels for 2.2.x
are those released by Alan Cox, for 2.4.x by Marcelo Tosatti and for 2.5.x by Linus
Torvalds. At each release, the full tar file is available as well as a smaller patch which
contains the differences between the two releases. Patching is the preferred method
of upgrading for bandwidth considerations. Contributions made to the kernel are
almost always in the form of patches which is basically the output of unified diff
generated with the GNU tool diff.

Why patches This method of sending patches to be merged to the mailing list
initially sounds clumsy but it is remarkable efficient in the kernel development en-
vironment. The principle advantage of patches is that it is very easy to show what

10

2.1. Managing the Source 11

changes have been made rather than sending the full file and viewing both versions
side by side. A developer familiar with the code being patched can easily see what
impact the changes will have and if they should be merged. In addition, it is very
easy to quote the email from the patch and request more information about partic-
ular parts of it. There are scripts available that allow emails to be piped to a script
which strips away the mail and keeps the patch available.

Subtrees At various intervals, individual influential developers may have their
own version of the kernel distributed as a large patch to the mainline. These subtrees
generally contain features or cleanups which have not been merged to the mainstream
yet or are still being tested. Two notable subtrees is the rmap tree maintained by
Rik Van Riel, a long time influential VM developer and the mm tree maintained by
Andrew Morton, the current maintainer of the stock VM. The rmap tree is a large
set of features that for various reasons never got merged into the mainline. It is
heavily influenced by the FreeBSD VM and has a number of significant differences
to the stock VM. The mm tree is quite different to rmap in that it is a testing tree
with patches that are waiting to be tested before merging into the stock kernel.
Much of what exists in the mm tree eventually gets merged.

BitKeeper In more recent times, some developers have started using a source
code control system called BitKeeper1, a proprietary version control system that
was designed with the Linux Kernel as the principle consideration. BitKeeper allows
developers to have their own distributed version of the tree and other users may “pull”
changesets, sets of patches from each others trees. This distributed nature is a very
important distinction from traditional version control software which depends on a
central server.

BitKeeper allows comments to be associated with each patch which may be
displayed as a list as part of the release information for each kernel. For Linux, this
means that patches preserve the email that originally submitted the patch or the
information pulled from the tree so that the progress of kernel development is a lot
more transparent. On release, a summary of the patch titles from each developer is
displayed as a list and a detailed patch summary is also available.

As BitKeeper is a proprietary product, which has sparked any number of flame
wars2 with free software developers, email and patches are still considered the only
way to generate discussion on code changes. In fact, some patches will simply not be
considered for merging unless some discussion on the main mailing list is observed.
As a number of CVS and plain patch portals are available to the BitKeeper tree
and patches are still the preferred means of discussion, it means that at no point is
a developer required to have BitKeeper to make contributions to the kernel but the
tool is still something that developers should be aware of.

1http://www.bitmover.com
2A regular feature of kernel discussions meaning an acrimonious argument often containing

insults bordering on the personal type

2.1.1. Diff and Patch 12

2.1.1 Diff and Patch

The two tools for creating and applying patches are diff and patch, both of which
are GNU utilities available from the GNU website3. diff is used to generate patches
and patch is used to apply them. While the tools may be used in a wide variety of
ways, there is a “preferred” usage.

Patches generated with diff should always be unified diffs and generated from
one directory above the kernel source root. A unified diff is considered the easiest
context diff to read as it provides what line numbers the block begins at, how long
it lasts and then it marks lines with +, - or a blank. If the mark is +, the line is
added. If a -, the line is removed and a blank is to leave the line alone as it is there
just to provide context. The reasoning behind generating from one directory above
the kernel root is that it is easy to see quickly what version the patch has been
applied against and it makes the scripting of applying patches easier if each patch
is generated the same way.

Let us take for examples, a very simple change has been made to mm/page_alloc.c
which adds a small piece of commentary. The patch is generated as follows. Note
that this command should be all one one line minus the backslashes.

mel@joshua: kernels/ $ diff -u \
linux-2.4.20-clean/mm/page_alloc.c \
linux-2.4.20-mel/mm/page_alloc.c > example.patch

This generates a unified context diff (-u switch) between the two files and places
the patch in example.patch as shown in Figure 2.1.1.

From this patch, it is clear even at a casual glance what files are affected
(page_alloc.c), what line it starts at (76) and the new lines added are clearly marked
with a + . In a patch, there may be several “hunks” which are marked with a line
starting with @@ . Each hunk will be treated separately during patch application.

Patches broadly speaking come in two varieties, plain text such as the one above
which are sent to the mailing list and a compressed form with gzip (.gz extension)
of bzip2 (.bz2 extension). It can be generally assumed that patches are taken from
one level above the kernel root so can be applied with the option -p1. Broadly
speaking, a plain text patch to a clean tree can be easily applied as follows

mel@joshua: kernels/ $ cd linux-2.4.20-clean/
mel@joshua: linux-2.4.20-clean/ $ patch -p1 < ../example.patch
mel@joshua: linux-2.4.20-mel/ $ patch -p1 < ../example.patch
patching file mm/page_alloc.c
mel@joshua: linux-2.4.20-mel/ $

To apply a compressed patch, it is a simple extension to just decompress the
patch to stdout first.

mel@joshua: linux-2.4.20-mel/ $ gzip -dc ../example.patch.gz | patch -p1

3http://www.gnu.org

2.1.2. Browsing the Code 13

--- linux-2.4.20-clean/mm/page_alloc.c Thu Nov 28 23:53:15 2002
+++ linux-2.4.20-mel/mm/page_alloc.c Tue Dec 3 22:54:07 2002
@@ -76,8 +76,23 @@

* triggers coalescing into a block of larger size.
*
* -- wli

+ *
+ * There is a brief explanation of how a buddy algorithm works at
+ * http://www.memorymanagement.org/articles/alloc.html . A better idea
+ * is to read the explanation from a book like UNIX Internals by
+ * Uresh Vahalia
+ *

*/

+/**
+ *
+ * __free_pages_ok - Returns pages to the buddy allocator
+ * @page: The first page of the block to be freed
+ * @order: 2^order number of pages are freed
+ *
+ * This function returns the pages allocated by __alloc_pages and tries to
+ * merge buddies if possible. Do not call directly, use free_pages()
+ **/
static void FASTCALL(__free_pages_ok (struct page *page, unsigned int order));
static void __free_pages_ok (struct page *page, unsigned int order)
{

Figure 2.1: Example Patch

If a hunk can be applied but the line numbers are different, the hunk number
and the number of lines needed to offset will be output. These are generally safe
warnings and may be ignored. If there are slight differences in the context, it will be
applied and the level of “fuzziness” will be printed which should be double checked.
If a hunk fails to apply, it will be saved to filename.c.rej and the original file will be
saved to filename.c.orig and have to be applied manually.

2.1.2 Browsing the Code

When code is small and manageable, it is not particularly difficult to browse through
the code. Generally, related operations are clustered together in the same file and
there is not much coupling between modules. The kernel unfortunately does not
always exhibit this behavior. Functions of interest may be spread across multiple
files or contained as inline functions in header files. To complicate matters, files
of interest may be buried beneath architecture specific directories making tracking

2.1.3. Analyzing Code Flow 14

them down time consuming.
An early solution to the problem of easy code browsing was ctags which could

generate tag files from a set of source files. These tags could be used to jump to the
C file and line where the function existed with editors such as Vi and Emacs. This
does not work well when there is multiple functions of the same name which is the
case for architecture code or if a type of variable needs to be identified.

A more comprehensive solution is available with the Linux Cross-Referencing
(LXR) tool available from http://lxr.linux.no. The tool provides the ability to
represent source code as browsable web pages. Global identifiers such as global vari-
ables, macros and functions become hyperlinks. When clicked, the location where
it is defined is displayed along with every file and line referencing the definition.
This makes code navigation very convenient and is almost essential when reading
the code for the first time.

The tool is very easily installed as the documentation is very clear. For the
research of this document, it was deployed at http://monocle.csis.ul.ie which was
used to mirror recent development branches. All code snipped shown in this and
the companion document were taken from LXR so that the line numbers would be
visible.

2.1.3 Analyzing Code Flow

As separate modules share code across multiple C files, it can be difficult to see
what functions are affected by a given code path without tracing through all the
code manually. For a large or deep code path, this can be extremely time consuming
to answer what should be a simple question.

Based partially on the work of Martin Devera4, I developed a tool called gen-
graph. The tool can be used to generate call graphs from any given C code that
has been compiled with a patched version of gcc.

During compilation with the patched compiler, cdep files are generated for each
C file which lists all functions and macros that are contained in other C files as well
as any function call that is made. These files are distilled with a program called
genfull to generate a full call graph of the entire source code which can be rendered
with dot, part of the GraphViz project5.

In kernel 2.4.20, there were a total of 14593 entries in the full.graph file gener-
ated by genfull. This call graph is essentially useless on its own because of its size
so a second tool is provided called gengraph. This program at basic usage takes
just the name of a function as an argument and generates a call graph with the
requested function at the top. This can result in unnecessary depth to the graph or
graph functions that the user is not interested in, therefore there are three limiting
options to graph generation. The first is limit by depth where functions that are X
deep in a call chain are ignored. The second is to totally ignore a function so it will
not appear on the call graph or any of the functions they call. The last is to display

4http://luxik.cdi.cz/∼devik
5http://www.graphviz.org

2.1.4. Basic Source Management with patchset 15

a function, but not traverse it which is convenient when the function is covered on
a separate call graph.

All call graphs shown in this or the the companion document are generated with
the gengraph package which is freely available at http://www.csn.ul.ie/∼mel/projects/gengraph.
It is often much easier to understand a subsystem at first glance when a call graph
is available. It has been tested with a number of other open source projects based
on C and has wider application than just the kernel.

2.1.4 Basic Source Management with patchset

The untarring of sources, management of patches and building of kernels is initially
interesting but quickly palls. To cut down on the tedium of patch management, a
tool was developed called patchset designed for the management of kernel sources.

It uses files called set configurations to specify what kernel source tar to use,
what patches to apply, what configuration to use for the build and what the resulting
kernel is to be called. A sample specification file to build kernel 2.4.20-rmap15a is;

linux-2.4.18.tar.gz
2.4.20-rmap15a
config_joshua

1 patch-2.4.19.gz
1 patch-2.4.20.gz
1 2.4.20-rmap15a

This first line says to unpack a source tree starting with linux-2.4.18.tar.gz. The
second line specifies that the kernel will be called 2.4.20-rmap15a and the third line
specifies which config file to use for building the kernel. Each line after that has two
parts. The first part says what patch depth to use i.e. what number to use with the
-p switch to patch. As discussed earlier, this is usually 1. The second is the name
of the patch stored in the patches directory. The above example has two patches to
update the kernel to 2.4.20 before applying 2.4.20-rmap15a.

The package comes with three scripts. The first make-kernel.sh will unpack the
kernel to the kernels/ directory and build it if requested. If the target distribution
is Debian, it can also create Debian packages for easy installation. The second
make-gengraph will unpack the kernel but instead of building an installable kernel,
it will generate the files required to use gengraph for creating call graphs. The last
make-lxr will install the kernel to the LXR root and update the versions so that
the new kernel will be displayed on the web page.

With the three scripts, a large amount of the tedium involved with managing
kernel patches is eliminated. The tool is fully documented and freely available from
http://www.csn.ul.ie/∼mel/projects/patchset.

2.2. Getting Started 16

2.2 Getting Started

When a new developer or researcher asks how to begin reading the code, they are
often recommended to start with the init code and work from there. I do not believe
that this is the best approach as the init code is quite architecture dependent and
requires a detailed hardware knowledge to decipher it. It also does not give much
information about how a subsystem like the VM works as it is only in the late stages
of initialisation that memory is set up in the way the running system sees it.

The best starting point for kernel documentation is first and foremost the
Documentation/ tree. It is very loosely organized but contains much Linux specific
information that will be unavailable elsewhere. The second visiting point is the Ker-
nel Newbies website at http://www.kernelnewbies.org which is a site dedicated to
people starting kernel development and includes a FAQ and recommended reading.

The best starting point to understanding the VM I believe is now this docu-
ment and the companion code commentary. It describes a VM that is reasonably
comprehensive without being overly complicated.

For when the code has to be approached afresh with a later VM, it is always best
to start in an isolated region that has the minimum number of dependencies. In the
case of the VM, the best starting point is the Out Of Memory (OOM) manager in
mm/oom_kill.c . It is a very gentle introduction to one corner of the VM where a
process is selected to be killed in the event that memory in the system is low. The
second subsystem to then examine is the non-contiguous memory allocator located
in mm/vmalloc.c and discussed in Chapter 7 as it is reasonably contained within one
file. The third system should be physical page allocator located in mm/page_alloc.c
and discussed in Chapter 6 for similar reasons. The fourth system of interest is the
creation of VMA’s and memory areas for processes discussed in Chapter 9. Between
these systems, they have the bulk of the code patterns that are prevalent throughout
the rest of the kernel code making the deciphering of more complex systems such as
the page replacement policy or the buffer IO much easier to comprehend.

The second recommendation that is given by experienced developers is to bench-
mark and test but unfortunately the VM is difficult to test accurately and bench-
marking is just a shade above vague handwaving at timing figures. A tool called
VM Regress was developed during the course of research and is available at
http://www.csn.ul.ie/∼mel/vmregress that lays the foundation required to build a
fully fledged testing, regression and benchmarking tool for the VM. It uses a com-
bination of kernel modules and userspace tools to test small parts of the VM in a
reproducible manner and has one benchmark for testing the page replacement policy
using a large reference string. It is intended as a frame work for the development of
a testing utility and has a number of PERL libraries and helper kernel modules to
do much of the work but is in the early stages of development at time of writing.

2.3. Submitting Work 17

2.3 Submitting Work

A quite comprehensive set of documents on the submission of patches is available
in the Documentation/ part of the kernel source tree and it is important to read.
There is two files SubmittingPatches and CodingStyle which cover the important
basics but there seems to be very little documentation describing how to go about
getting patches merged. Hence, this section will give a brief introduction on how,
broadly speaking, patches are managed.

First and foremost, the coding style of the kernel needs to be adhered to as
having a style inconsistent with the main kernel will be a barrier to getting merged
regardless of the technical merit. Once a patch has been developed, the first problem
is to decide where to send it. Kernel development has a definite, if non-apparent,
hierarchy of who handles patches and how to get them submitted. As an example,
we’ll take the case of 2.5.x development.

The first check to make is if the patch is very small or trivial. If it is, post it
to the main kernel mailing list. If there is no bad reaction, it can be fed to what is
called the Trivial Patch Monkey6. The trivial patch monkey is exactly what it
sounds like, it takes small patches and feeds them en-masse to the correct people.
This is best suited for documentation, commentary or one-liner patches.

Patches are managed through what could be loosely called a set of rings with
Linus in the very middle having the final say on what gets accepted into the main
tree. Linus, with rare exceptions, accepts patches only from who he refers to as his
“lieutenants”, a group of around 10 people who he trusts to “feed” him correct code.
An example lieutenant is Andrew Morton, the VM maintainer at time of writing.
Any change to the VM has to be accepted by Andrew before it will get to Linus.
These people are generally maintainers of a particular system but sometimes will
“feed” him patches from another subsystem if they feel it is important.

Each of the lieutenants are active developers on different subsystems. Just like
Linus, they have a small set of developers they trust to be knowledgeable about the
patch they are sending but will also pick up patches which affect their subsystem
more readily. Depending on the subsystem, the list of people they trust will be
heavily influenced by the list of maintainers in the MAINTAINERS file. The second
major area of influence will be from the subsystem specific mailing list if there is
one. The VM does not have a list of maintainers but it does have a mailing list7.

The maintainers and lieutenants are crucial to the acceptance of patches. Linus,
broadly speaking, does not appear to wish to be convinced about the merit for a
significant patch but prefers to hear it from one of his lieutenants, which is under-
standable considering the volume of patches that exists.

In summary, a new patch should be sent to the subsystem mailing list cc’d to
the main list to generate discussion. If there is no reaction, it should be sent to
the maintainer for that area of code if there is one and to the lieutenant if there is
not. Once it has been picked up by a maintainer or lieutenant, chances are it will

6http://www.kernel.org/pub/linux/kernel/people/rusty/trivial/
7http://www.linux-mm.org/mailinglists.shtml

2.3. Submitting Work 18

be merged. The important key is that patches and ideas must be released early and
often so developers have a chance to look at it while it is still manageable. There are
notable cases where massive patches had difficult getting merged because there were
long periods of silence with little or no discussions. A recent example of this is the
Linux Kernel Crash Dump project which still has not been merged into the main
stream because there has not been favorable from lieutenants or strong support from
vendors.

Chapter 3

Describing Physical Memory

Linux is available for many architectures so there needs to be an architecture inde-
pendent way of describing memory. This section describes the structures used to
keep account of memory banks, pages and the flags that affect VM behavior.

With large scale machines, memory may be arranged into banks that incur a
different cost to use depending on processor. For example, there might be a bank of
memory assigned to each CPU or a bank of memory very suitable for DMA. These
banks are said to be at varying distances and exist on architectures referred to as
NUMA (Non-Uniform Memory Access) architectures.

In Linux, each bank is called a node and is represented by struct pg_data_t.
Every node in the system is kept on a NULL terminated list called pgdat_list.
Each node is linked to the next with the field by pg_data_t→node_next. For
UMA architectures like PC desktops only one static pg_data_t structure called
contig_page_data is used.

Each node is then divided up into a number of blocks called zones which represent
ranges within memory. A zone is described by a struct zone_t and each one is
one of ZONE_DMA, ZONE_NORMAL or ZONE_HIGHMEM. Each is suitable a
different type of usage. ZONE_DMA is memory in the lower physical ranges which
certain ISA devices require. ZONE_NORMAL is memory that can be directly
mapped by the kernel in the upper 1GiB of the linear address space. It is important
to note that many kernel operations can only take place using ZONE_NORMAL so
it is the most performance critical zone. ZONE_HIGHMEM is the rest of memory.
With the x86 the zones are

ZONE_DMA First 16MiB of memory
ZONE_NORMAL 16MiB - 896MiB
ZONE_HIGHMEM 896 MiB - End

Each physical page frame is represented by a struct page and all the structs
are kept in mem_map array that is stored at PAGE_OFFSET, the beginning of the
virtual address space the kernel can see, 3GiB on the x86. The pages are stored in
this area so that the physical address for a page struct may be easily calculated.
Each zone has a pointer within this array called zone_mem_map. Note that a struct
page is not the actual physical page.

The high memory extensions allow the kernel to address up to 64GiB in the-

19

3.1. Nodes 20

pg_data_t

node_zones

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

zone_mem_map zone_mem_map zone_mem_map

struct page struct page struct page struct page struct page struct page

Figure 3.1: Relationship Between Nodes, Zones and Pages

ory but in practice it can’t. The struct pages to describe each page frame re-
quires 44 bytes and this uses kernel virtual address space in ZONE_NORMAL.
That means to describe 1GiB of memory, approximately 11MiB of kernel memory
is required. At 16GiB, 176MiB of memory is consumed putting significant pressure
on ZONE_NORMAL. This does not sound too bad until other structures are taken
into account which use ZONE_NORMAL. Even very small structures such as PTEs
require about 16MiB in the worst case. This makes 16GiB about the practical limit
for physical memory on an x86.

The relationship between the structs mentioned so far is described in Figure 3.1.

3.1 Nodes

Each node in memory is described by a pg_data_t struct. When allocating a page,
Linux uses a node-local allocation policy to allocate memory from the node closest
to the running CPU. As processes tend to run on the same CPU or can be explicitly
bound, it is likely the memory from the current node will be used.

The struct is declared as follows in include/linux/mmzone.h

129 typedef struct pglist_data {
130 zone_t node_zones[MAX_NR_ZONES];
131 zonelist_t node_zonelists[GFP_ZONEMASK+1];
132 int nr_zones;
133 struct page *node_mem_map;
134 unsigned long *valid_addr_bitmap;
135 struct bootmem_data *bdata;

3.1. Nodes 21

136 unsigned long node_start_paddr;
137 unsigned long node_start_mapnr;
138 unsigned long node_size;
139 int node_id;
140 struct pglist_data *node_next;
141 } pg_data_t;

node_zones The zones for this node, usually ZONE_HIGHMEM, ZONE_NORMAL,
ZONE_DMA

node_zonelists This is the order of zones that allocations are preferred
from. build_zonelists() in page_alloc.c does the work when called by
free_area_init_core(). So a failed allocation ZONE_HIGHMEM may fall
back to ZONE_NORMAL or back to ZONE_DMA

nr_zones Number of zones in this node, between 1 and 3. Not all nodes will
have three. A CPU bank may not have ZONE_DMA for example

node_mem_map This is the first page of a struct page array representing each
physical frame in the node.

valid_addr_bitmap A bitmap which describes "holes" in the memory node
that no memory exists for.

bdata This is only of interest to the boot memory allocator

node_start_paddr The starting physical address of the node. This doesn’t work
really well as an unsigned long as it breaks for ia32 with PAE for example. A
more suitable solution would be to record this as a Page Frame Number (pfn)
. This could be trivially defined as (page_phys_addr >> PAGE_SHIFT)

node_start_mapnr This gives the page offset within the global mem_map. It
is calculated in free_area_init_core() by calculating the number of pages
between mem_map the the local mem_map for this node called lmem_map.

node_size The total number of pages in this zone

node_id The ID of the node, starts at 0

node_next Pointer to next node in a NULL terminated list

All nodes in the system are maintained on a list called pgdat_list. The nodes
are placed on this list as they are initialised by the init_bootmem_core() function,
described later in Section 5.2.2. Up until late 2.4 kernels (> 2.4.18), blocks of code
that traversed the list looked something like;

3.2. Zones 22

pg_data_t * pgdat;
pgdat = pgdat_list;
do {

/* do something with pgdata_t */
...

} while ((pgdat = pgdat->node_next));

In more recent kernels, a macro for_each_pgdat, which is trivially defined as a
for loop, is provided to make the code more readable.

3.2 Zones

Zones are described by a struct zone_t. It keeps track of information like page
usage statistics, free area information and locks. It is declared as follows in
include/linux/mmzone.h

37 typedef struct zone_struct {
41 spinlock_t lock;
42 unsigned long free_pages;
43 unsigned long pages_min, pages_low, pages_high;
44 int need_balance;
45
49 free_area_t free_area[MAX_ORDER];
50
76 wait_queue_head_t * wait_table;
77 unsigned long wait_table_size;
78 unsigned long wait_table_shift;
79
83 struct pglist_data *zone_pgdat;
84 struct page *zone_mem_map;
85 unsigned long zone_start_paddr;
86 unsigned long zone_start_mapnr;
87
91 char *name;
92 unsigned long size;
93 } zone_t;

lock Spinlock to protect the zone

free_pages Total number of free pages in the zone

pages_min, pages_low, pages_high Zone watermarks, described in the next
section

need_balance A flag that tells kswapd to balance the zone

3.2.1. Zone Watermarks 23

free_area Free area bitmaps used by the buddy allocator

wait_table A hash table of wait queues of processes waiting on a page to be
freed. This is of importance to wait_on_page() and unlock_page(). While
processes could all wait on one queue, this would cause a thundering herd of
processes to race for pages still locked when woken up

wait_table_size Size of the hash table

wait_table_shift Defined as the number of bits in a long minus the table size.
When the hash is calculated, it will be shifted right this number of bits so that
the hash index will be inside the table.

zone_pgdat Points to the parent pg_data_t

zone_mem_map The first page in mem_map this zone refers to

zone_start_paddr Same principle as node_start_paddr

zone_start_mapnr Same principle as node_start_mapnr

name The string name of the zone, DMA, Normal or HighMem

size The size of the zone in pages

3.2.1 Zone Watermarks

When available memory in the system is low, the pageout daemon kswapd is woken
up to start freeing up pages (See Chapter 11). If memory gets too low, the process
will free up memory synchronously. The parameters affecting pageout behavior are
similar to those by FreeBSD[McK96] and Solaris[JM01].

Each zone has watermarks which help track how much pressure a zone is un-
der. They are pages_low, pages_min and pages_high. The number of pages for
pages_min is calculated in the function free_area_init_core() during memory
init and is based on a ratio to the size of the zone in pages. It is calculated initially
as ZoneSizeInPages/128. The lowest value it will be is 20 pages (80K on a x86)
and the highest possible value is 255 pages (1MiB on a x86).

pages_min When pages_min is reached, the allocator will do the kswapd work
in a synchronous fashion. There is no real equivalent in Solaris but the closest
is the desfree or minfree which determine how often the pageout scanner is
woken up.

pages_low is twice the value of pages_min. When pages_low number of free
pages is reached, kswapd is woken up by the buddy allocator to start freeing
pages. This is equivalent to when lotsfree is reached in Solaris and freemin in
FreeBSD.

3.3. Pages 24

pages_high is three times the value of pages_min. Once reached, kswapd is
woken, it won’t consider the zone to be “balanced” until pages_high pages are
free. In Solaris, this is called lotsfree and in BSD, it is called free_target.

Whatever the pageout parameters are called in each operating system, the mean-
ing is the same, it helps determine how hard the pageout daemon or processes work
to free up pages.

3.3 Pages

Every physical page frame in the system has an associated struct page which is
used to keep track of its status. In the 2.2 kernel[BC00], the structure of this page
resembled to some extent to System V[GC94] but like the other families in UNIX,
it changed considerably. It is declared as follows in include/linux/mm.h

152 typedef struct page {
153 struct list_head list;
154 struct address_space *mapping;
155 unsigned long index;
156 struct page *next_hash;
158 atomic_t count;
159 unsigned long flags;
161 struct list_head lru;
163 struct page **pprev_hash;
164 struct buffer_head * buffers;
175
176 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
177 void *virtual;
179 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
180 } mem_map_t;

list Pages may belong to many lists and this field is used as the list head. For
example, pages in a mapping will be in one of three circular linked links kept
by the address_space. These are clean_pages, dirty_pages and locked_pages.
In the slab allocator, this field is used to store pointers to the slab and cache
the page belongs to. It is also used to link blocks of free pages together.

mapping When files or devices are mmaped, their inode has an associated
address_space. This field will point to this address space if the page be-
longs to the file.

index This field has two uses and it depends on the state of the page what it
means. If the page is part of a file mapping, it is the offset within the file.
This includes if the page is part of the swap cache where the address_space
is the swap address space (swapper_space). Secondly, if a block of pages is

3.3.1. Mapping Pages to Zones 25

being freed for a particular process, the order (power of two number of pages
being freed) of the block being freed is stored in index. This is set in the
function __free_pages_ok()

next_hash Pages that are part of a file mapping are hashed on the inode and
offset. This field links pages together that share the same hash bucket.

count The reference count to the page. If it drops to 0, it may be freed. Any
greater and it is in use by one or more processes or is in use by the kernel like
when waiting for IO.

flags Flags which describe the status of the page. All of them are declared in
include/linux/mm.h and are listed and described in Table 3.1. There is a
number of macros defined for testing, clearing and setting the bits which are
all listed in Table 3.2

lru For the page replacement policy, pages that may be swapped out will exist on
either the active_list or the inactive_list declared in page_alloc.c . This is
the list head for these LRU lists

pprev_hash The complement to next_hash

buffers If a page has buffers for a block device associated with it, this field is used
to keep track of the buffer_head

virtual Normally only pages from ZONE_NORMAL may be directly mapped by
the kernel. To address pages in ZONE_HIGHMEM, kmap() is used to map
the page for the kernel. There are only a fixed number of pages that may be
mapped. When it is mapped, this is its virtual address

The struct page is a typedef for mem_map_t so the struct page can be easily
referred to within the mem_map array.

3.3.1 Mapping Pages to Zones

Up until as recently as Kernel 2.4.18, a reference was stored to the zone at
page→zone which was later considered wasteful. In the most recent kernels, this has
been removed and instead the top ZONE_SHIFT (8 in the x86) bits of the page→flags
is used to determine the zone a page belongs to. First a zone_table of zones is set
up. It is declared in include/linux/page_alloc.c as

33 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];
34 EXPORT_SYMBOL(zone_table);

MAX_NR_ZONES is the maximum number of zones that can be in a node,
i.e. 3. MAX_NR_NODES is the maximum number of nodes that may exist. This
table is treated like a multi-dimensional array. During free_area_init_core(), all
the pages in a node are initialised. First it sets the value for the table

3.3.1. Mapping Pages to Zones 26

734 zone_table[nid * MAX_NR_ZONES + j] = zone;

Where nid is the node ID, j is the zone index and zone is the zone_t struct. For
each page, the function set_page_zone() is called as

788 set_page_zone(page, nid * MAX_NR_ZONES + j);

page is the page to be set. So, clearly the index in the zone_table is stored in
the page.

3.3.1. Mapping Pages to Zones 27

Bit name Description
PG_active This bit is set if a page is on the active_list LRU

and cleared when it is removed. It marks a page as
being hot

PG_arch_1 Quoting directly from the code: PG_arch_1 is an
architecture specific page state bit. The generic code
guarantees that this bit is cleared for a page when it
first is entered into the page cache

PG_checked Only used by the EXT2 filesystem
PG_dirty This indicates if a page needs to be flushed to disk.

When a page is written to that is backed by disk, it is
not flushed immediately, this bit is needed to ensure
a dirty page is not freed before it’s written out

PG_error If an error occurs during disk I/O, this bit is set
PG_highmem Pages in high memory cannot be mapped perman-

ently by the kernel. Pages that are in high memory
are flagged with this bit during mem_init()

PG_launder This bit is important only to the page replacement
policy. When the VM wants to swap out a page, it
will set this bit and call the writepage() function.
When scanning, if it encounters a page with this bit
and PG_locked set, it will wait for the I/O to com-
plete

PG_locked This bit is set when the page must be locked in
memory for disk I/O. When I/O starts, this bit is
set and released when it completes

PG_lru If a page is on either the active_list or the inact-
ive_list, this bit will be set

PG_referenced If a page is mapped and it is referenced through the
mapping, index hash table, this bit is set. It’s used
during page replacement for moving the page around
the LRU lists

PG_reserved This is set for pages that can never be swapped out.
It is set during init until the machine as booted up.
Later it is used to flag empty pages or ones that do
not even exist

PG_slab This will flag a page as being used by the slab alloc-
ator

PG_skip Used by some architectures so skip over parts of the
address space

PG_unused This bit is literally unused
PG_uptodate When a page is read from disk without error, this bit

will be set.

Table 3.1: Flags Describing Page Status

3.3.1. Mapping Pages to Zones 28

Bit name Set Test Clear
PG_active SetPageActive PageActive ClearPageActive
PG_arch_1 n/a n/a n/a
PG_checked SetPageChecked PageChecked n/a
PG_dirty SetPageDirty PageDirty ClearPageDirty
PG_error SetPageError PageError ClearPageError
PG_highmem n/a PageHighMem n/a
PG_launder SetPageLaunder PageLaunder ClearPageLaunder
PG_locked LockPage PageLocked UnlockPage
PG_lru TestSetPageLRU PageLRU TestClearPageLRU
PG_referenced SetPageReferenced PageReferenced ClearPageReferenced
PG_reserved SetPageReserved PageReserved ClearPageReserved
PG_skip n/a n/a n/a
PG_slab PageSetSlab PageSlab PageClearSlab
PG_unused n/a n/a n/a
PG_uptodate SetPageUptodate PageUptodate ClearPageUptodate

Table 3.2: Macros For Testing, Setting and Clearing Page Status Bits

Chapter 4

Page Table Management

Linux is unusual with how it layers the machine independent/dependent layer[CP99]
as while many other operating systems such objects like the pmap object in BSD
Linux instead always maintains the concept of a three-level page table in the ar-
chitecture independent code even if the underlying architecture does not support
it. While this is relatively easy to understand, it also means that the distinction
between different types of pages is very blurry and page types are identified by their
flags or what lists they exist on rather than the objects they belong to.

Architectures that manage their MMU differently are expected to emulate the
three-level page tables. For example, on the x86 without Physical Address Exten-
sions (PAE) mode enabled, only two page table levels are available. The Page Middle
Directory (PMD) is defined to be of size 1 and folds back directly onto the Page
Global Directory (PGD) which is optimized out at compile time. Unfortunately,
for architectures that do not manage their cache or TLB automatically, hooks for
machine dependent have to be explicitly left in the code for when the TLB and CPU
caches need to be altered and flushed even if they are null operations on some archi-
tectures like the x86. Fortunately, the functions and how they have to be used is very
well documented in the cachetlb.txt file in the kernel documentation tree[Mil00].

4.1 Describing the Page Directory

Each process has its own PGD (Page Global Directory) which is a physical page
frame containing an array of pgd_t which is an architecture specific type defined in
include/asm/page.h. How the page table is loaded is different for each architecture.
On the x86, the process page table is loaded by copying the pointer into the cr3
register which has the side effect of flushing the TLB and in fact is how the function
__flush_tlb() is implemented in the architecture dependent code.

Each entry in the PGD table points to a page frame containing an array of Page
Middle Directory (PMD) entries of type pmd_t which in turn points to a page
frame containing Page Table Entries (PTE) of type pte_t, which in turn points
to page frames containing data. In the event the page has been swapped out to
backing storage, the swap entry is stored in the PTE and used by do_swap_page()

29

4.1. Describing the Page Directory 30

during page fault to find the swap entry containing the page data.
Any given linear address may be broken up into parts to yield offsets within

these three page tables and finally as an offset within the actual page.

Figure 4.1: Linear Address Bit Size Macros

To help break up the linear address into its component parts, a number of macros
are provided in triplets for each level, a SHIFT, a SIZE and a MASK macro. The
SHIFT macros specifies the length in bits that are mapped by each level of the page
tables as illustrated in Figure 4.1. The MASK values can be AND’d with a linear
address to mask out all the upper bits and is frequently used to determine if a linear
address is aligned to a given level within the page table. Finally the SIZE macros
reveal how many bytes are address by each entry at each level. The relationship
between the SIZE and MASK macros is illustrated in Table 4.2.

Figure 4.2: Linear Address Size and Mask Macros

For the calculation of each of the triplets, only SHIFT is important as the other

4.2. Describing a Page Table Entry 31

two are calculated based on it. For example, the three macros for page level on the
x86 is

5 #define PAGE_SHIFT 12
6 #define PAGE_SIZE (1UL << PAGE_SHIFT)
7 #define PAGE_MASK (~(PAGE_SIZE-1))

PAGE_SHIFT is the length in bits of the offset part of the linear address
space which is 12 bits on the x86. The size is easily calculated as 2PAGE_SHIFT

which is the equivalent of the code above. Finally the mask is calculated as the
negation of the bits which make up the PAGE_SIZE - 1. To determine if an address
is page aligned, it is simply AND’d with the PAGE_MASK which will yield 0 if it
is aligned. To force an address to be page aligned, the PAGE_ALIGN function
is used.

PMD_SHIFT is the number of bits in the linear address which are mapped by
the second level part of the table. The PMD_SIZE and PMD_MASK are calculated
in a similar way to the page level macros.

PGDIR_SHIFT is the number of bits which are mapped by the top, or first
level, of the page table. The PGDIR_SIZE and PGDIR_MASK are calculated in
the same manner as above.

The last three macros of importance are the PTRS_PER_X which determine the
number of entries in each level of the page table. PTRS_PER_PGD is the num-
ber of pointers in the PGD, 1024 on an x86 without PAE. PTRS_PER_PMD is
for the PMD, 1 on the x86 without PAE and PTRS_PER_PTE is for the lowest
level, 1024 on the x86.

4.2 Describing a Page Table Entry

As mentioned, each entry is described by the structs pte_t, pmd_t and pgt_t for
PTEs, PMDs and PGDs respectively. Even though these are often just unsigned
integers, they are defined as structs for two reasons. The first is for type protection
so that they will not be used inappropriately. The second is for features like PAE on
the x86 where an additional 4 bits may be used for addressing more than 4GiB of
memory. To store the protection bits pgprot_t is defined which holds the relevant
flags and is usually stored in the lower bits of a page table entry.

For type casting, 4 macros are provided in asm/page.h which takes the above
types and returns the relevant part of the struts. They are pte_val, pmd_val,
pgd_val and pgprot_val. To reverse the type casting, 4 more macros are provided
__pte, __pmd, __pgd and __pgprot.

Where exactly the protection bits are stored is architecture dependent. For
illustration purposes, we will examine the case of an x86 architecture without PAE
enabled but the same principles apply across architectures. For this one, the pte_t
is a 32 bit integer stored within a struct. Each entry in this points to the address
of a page frame but all the addresses are guaranteed to be page aligned, therefore
there is PAGE_SHIFT (12) bits in that 32 bit value that are free for status bits of

4.3. Using Page Table Entries 32

Figure 4.3: Page Table Layout

the page table entry. A number of the protection and status bits are listed in Table
4.1 but what bits exist and what they mean vary between architectures.

Bit Function
_PAGE_PRESENT Page is resident in memory and not swapped out
_PAGE_RW Set if the page may be written to
_PAGE_USER Set if the page is accessible from user space
_PAGE_DIRTY Set if the page is written to
_PAGE_ACCESSED Set if the page is accessed

Table 4.1: Page Table Entry Protection and Status Bits

4.3 Using Page Table Entries

Macros are defined in asm/pgtable.h which are important for the navigation and
examination of page table entries. To navigate the page directories, three mac-
ros are provided which break up a linear address space into its component parts.
pgd_offset() takes an address and the mm_struct for the process and returns the
PGD entry that covers the requested address. pmd_offset() takes a PGD entry
and an address and returns the relevant PMD. pte_offset() takes a PMD and
returns the relevant PTE. The remainder of the linear address provided is the offset
within the page. The relationship between these fields is illustrated in Figure 4.3

The second round of macros determine if the page table entries are present or
may be used.

4.3. Using Page Table Entries 33

• pte_none(), pmd_none() and pgd_none() return 1 if the corresponding entry
does not exist.

• pte_present(), pmd_present() and pgd_present() return 1 if the corres-
ponding page table entries have the PRESENT bit set.

• pte_clear(), pmd_clear() and pgd_clear() will clear the corresponding
page table entry

• pmd_bad() and pgd_bad() are used to check entries when passed as input
parameters to functions that may change the value of the entries. Whether it
returns 1 varies between the few architectures that define these macros but for
those that actually define it, making sure the page entry is marked as present
and accessed is the two most important checks.

There is many parts of the VM which are littered with page table walk code and
it is important to recognize it. A very simple example of a page table walk is the
function follow_page() in mm/memory.c which is as follows;

405 static struct page * follow_page(struct mm_struct *mm,
unsigned long address, int write)

406 {
407 pgd_t *pgd;
408 pmd_t *pmd;
409 pte_t *ptep, pte;
410
411 pgd = pgd_offset(mm, address);
412 if (pgd_none(*pgd) || pgd_bad(*pgd))
413 goto out;
414
415 pmd = pmd_offset(pgd, address);
416 if (pmd_none(*pmd) || pmd_bad(*pmd))
417 goto out;
418
419 ptep = pte_offset(pmd, address);
420 if (!ptep)
421 goto out;
422
423 pte = *ptep;
424 if (pte_present(pte)) {
425 if (!write ||
426 (pte_write(pte) && pte_dirty(pte)))
427 return pte_page(pte);
428 }
429
430 out:

4.4. Translating and Setting Page Table Entries 34

431 return 0;
432 }

It simply uses the three offset macros to navigate the page tables and the _none
and _bad macros to make sure it is looking at a valid page table. The page table
walk had effectively ended at line 423.

The third set of macros examine and set the permissions of an entry. The
permissions determine what a userspace process can and cannot do with a particular
page. For example, the kernel page table entries are never readable to a userspace
process.

• The read permissions for an entry is tested with pte_read, made readable
with pte_mkread and protected with pte_rdprotect.

• The write permissions are tested with pte_write, made writable with
pte_mkwrite and protected with pte_wrprotect.

• The exec permissions are tested with pte_exec, made executable with
pte_mkexec and protected with pte_exprotect. It is worth nothing that
with the x86 architecture, there is no means of setting execute permissions on
pages so these three macros act the same way as the read macros

• The permissions can be modified to a new value with pte_modify but its use
is almost non-existent. It is only used in the function change_pte_range()
in mm/mprotect.c

The fourth set of macros examine and set the state of an entry. There is only
two states that are important in Linux, the dirty bit and the accessed bit. To check
these bits, the macros pte_dirty and pte_young macros are used. To set the
bits, the macros pte_mkdirty and pte_mkyoung are used and to clear them,
the macros pte_mkclean and pte_old are available.

4.4 Translating and Setting Page Table Entries

This set of functions and macros deal with the mapping of addresses and pages to
PTE’s and the setting the individual entries.

mk_pte takes a physical page and protection bits and combines them together
to form the pte_t that needs to be inserted into the page table. A similar macro
mk_pte_phys exists which treats the address as a physical address.

pte_page returns the struct page which corresponds to the PTE entry.
pmd_page returns the struct page containing the set of PTE’s.

set_pte takes a pte_t such as that returned by mk_pte and places it within the
processes page tables. pte_clear is the reverse operation. An additional function
is provided called ptep_get_and_clear which clears an entry from the process
page table and returns the pte_t. This is important when some modification needs
to be made to either the PTE protection or the struct page itself.

4.5. Allocating and Freeing Page Tables 35

4.5 Allocating and Freeing Page Tables

The last set of functions deal with the allocation and freeing of page tables. Page
tables, as stated, are physical pages containing an array of entries and the allocation
and freeing of physical pages is a relatively expensive operation, both in terms of
time and the fact that interrupts are disabled during page allocation. The allocation
and deletion of page tables, at any of the three levels, is a very frequent operation
so it is important the operation is as quick as possible.

Hence the pages used for the page tables are cached in a number of different lists
called quicklists. Each architecture implements these caches differently but the
principles used across all of them are the same. For example, not all architectures
bother to cache PGD’s because the allocation and freeing of them is only during
process creation and exit. As these are both very expensive operations, the allocation
of another page will not make much of a difference.

PGD’s, PMD’s and PTE’s have two sets of functions each for the allocation
and freeing of page tables. The allocation functions are pgd_alloc, pmd_alloc
and pte_alloc respectively and the free functions are, predictably enough, called
pgd_free, pmd_free and pte_free.

Broadly speaking, the three implement caching with the use of three caches called
pgd_quicklist, pmd_quicklist and pte_quicklist. Architectures implement
these three lists in different ways but one method is through the use of a LIFO type
structure. Ordinarily, a page table entry contains points to other pages containing
page tables or data. While cached, the first element of the list is used to point to the
next free page table. During allocation, one page is popped off the list and during
free, one is placed as the new head of the list. A count is kept of how many pages
are used in the cache.

The quick allocation function from the pgd_quicklist is not externally defined
outside of the architecture although get_pgd_fast is a common choice for the
function name. The cached allocation function for PMD’s and PTE’s are publicly
defined as pmd_alloc_one_fast and pte_alloc_one_fast.

If a page is not available from the cache, a page will be allocated using the
physical page allocator (See Section 6). The functions for the three levels of page
tables are get_pgd_slow, pmd_alloc_one and pte_alloc_one.

Obviously a large number of pages could end up on these caches and so there
is a way of pruning the size of the cache. Each time the caches grow or shrink,
a counter is incremented or decremented and it has a high and low watermark.
check_pgt_cache() is called in two places to check these watermarks. When the
high watermark is reached, entries from the cache will be freed until the cache size
returns to the low watermark. The function is called after clear_page_tables()
when a large number of page tables are potentially reached and is it also called by
the system idle task.

4.6. Initialising Kernel Page Tables 36

4.6 Initialising Kernel Page Tables

When the system first starts, paging is not enabled as page tables do not magically
initialise themselves. Each architecture implements this differently so only the x86
case will be discussed which is divided into two phase. The bootstrap phase sets
up page tables for just 8MiB so the paging unit can be enabled. The second phase
initialise the rest of the page tables.

4.6.1 Bootstrapping

The assembler function startup_32() is responsible for enabling the paging unit in
arch/i386/kernel/head.S . While all the normal kernel code in vmlinuz is com-
piled with the base address at PAGE_OFFSET + 1MiB but the kernel is actually
loaded beginning at the first megabyte (0x00100000) of memory1. The bootstrap
code in this file treats 1MiB as its base address by subtracting __PAGE_OFFSET
from any address until the paging unit is enabled so before the paging unit is en-
abled, a page table mapping has to be established which translates the 8MiB of
physical memory at the beginning of physical memory to the correct place after
PAGE_OFFSET.

paging_init

pagetable_init zone_sizes_init

__alloc_bootmem

fixrange_init

__alloc_bootmem_core

Figure 4.4: Call Graph: paging_init

It begins with statically defining an array called swapper_pg_dir() which is
placed using directives at 0x00101000. It then established page table entries for 2
pages pg0 and pg1. As the PSE bit is set in the cr4 register, pages translated are
4MiB pages, not 4KiB as is the normal case. The first pointers to pg0 and pg1 are
placed to cover the region 1-9MiB and the second pointers to pg0 and pg1 are placed
at PAGE_OFFSET+1MiB. This means that when paging is enabled, they will be
mapping to the correct pages using either physical or virtual addressing.

1The first megabyte is used by some devices so is skipped

4.6.2. Finalizing 37

Once this mapping has been established, the paging unit is turned on by setting a
bit in the cr0 register and a jmp takes places immediately to ensure the EIP register
is correct.

4.6.2 Finalizing

The function responsible for Finalizing the page tables is called paging_init().
The call graph for this function on the x86 can be seen on Figure 4.4.

For each pgd_t used by the kernel, the boot memory allocator is called to allocate
a page for the PMD. Similarly, a page will be allocated for each pmd_t allocator.
If the CPU has the PSE flag available, it will be set to enabled extended paging.
This means that each page table entry in the kernel paging tables will be 4MiB
instead of 4KiB. If the CPU supports the PGE flag, it also will be set so that the
page table entry will be global. Lastly, the page tables from PKMAP_BASE are set
up with the function fixrange_init(). Once the page table has been fully setup,
swapper_pg_dir is loaded again into the cr3 register and the TLB is flushed.

Chapter 5

Boot Memory Allocator

It is impractical to statically initialise all the core kernel memory structures at com-
pile time as there is simply far too many permutations of hardware configurations.
Yet to set up even the basic structures requires memory as even the physical page
allocator, discussed in the next chapter, needs to allocate memory to initialise itself.
But how can the physical page allocator allocate memory to initialise itself?

To address this, a specialised allocator called the Boot Memory Allocator is
used. It is based on the most basic of allocators, a First Fit allocator which uses a
bitmap to represent memory[Tan01] instead of linked lists of free blocks. If a bit is
1, the page is allocated and 0 if unallocated. To satisfy allocations of sizes smaller
than a page, the allocator records the Page Frame Number (PFN) of the last
allocation and the offset the allocation ended at. Subsequent small allocations are
“merged” together and stored on the same page.

The reader may ask why this allocator is not used for the running system. One
strong reason is that although the first fit allocator does not suffer badly from
fragmentation[JW98], memory frequently has to linearly searched to satisfy an alloc-
ation. As this is examining bitmaps, it gets very expensive, especially as the first fit
algorithm tends to leave many small free blocks at the beginning of physical memory
which still get scanned for large allocations making it very wasteful[WJNB95].

There is two very similar but distinct APIs for the allocator. One is for UMA
architectures, listed in Table 5.1 and the other is for NUMA, listed in Table 5.2. The
principle difference is that the NUMA API must be supplied with the node affected
by the operation. The callers of these APIs are architecture aware layer so it is not
a significant problem.

5.1 Representing the Boot Map

A bootmem_data struct exists for each node of memory in the system. It contains
the information needed for the boot memory allocator to allocate memory for a node
such as the bitmap representing allocated pages and where the memory is located.
It is declared as follows in include/linux/bootmem.h ;

38

5.2. Initialising the Boot Memory Allocator 39

25 typedef struct bootmem_data {
26 unsigned long node_boot_start;
27 unsigned long node_low_pfn;
28 void *node_bootmem_map;
29 unsigned long last_offset;
30 unsigned long last_pos;
31 } bootmem_data_t;

node_boot_start is the starting physical address of the represented block

node_low_pfn is the end physical address, in other words, the end of the
ZONE_NORMAL this node represents

node_bootmem_map is the location of the bitmap representing allocated or
free pages with each bit

last_offset is the offset within the the page of the end of the last allocation. If
0, the page used is full

last_pos is the the PFN of the page used with the last allocation. Using this
with the last_offset field, a test can be made to see if allocations can be
merged with the page used for the last allocation rather than using up a full
new page

5.2 Initialising the Boot Memory Allocator

Each architecture is required to supply a setup_arch() function which, among
other tasks, is responsible for acquiring the necessary parameters to initialise the
boot memory allocator.

Each architecture has its own function to get the necessary parameters. On the
x86, it is called setup_memory() but on other architectures such as MIPS or Sparc, it
is called bootmem_init() or do_init_bootmem() in the case of the PPC. Regardless
the architecture name, the tasks are essentially the same. The parameters it needs
to calculate are;

min_low_pfn is the lowest Page Frame Number (PFN) that is available in
the system.

max_low_pfn is the highest PFN that may be addressed by low memory
(ZONE_NORMAL)

highstart_pfn is the PFN of the beginning of high memory (ZONE_HIGHMEM)

highend_pfn is the ending PFN of high memory

max_pfn is the last PFN available to the system

5.2.1. Calculating The Size of Zones 40

5.2.1 Calculating The Size of Zones

setup_memory

find_max_pfn find_max_low_pfn init_bootmem register_bootmem_low_pages

reserve_bootmem

find_smp_config

init_bootmem_core free_bootmem

free_bootmem_core

reserve_bootmem_core

find_intel_smp

smp_scan_config

mpf_checksum

Figure 5.1: Call Graph: setup_memory

The Page Frame Number (pfn) is an offset, counted in pages, within the
physical memory map. The first PFN usable by the system, min_low_pfn is located
at the beginning of the first page after _end which is the end of the loaded kernel
image. The value is stored as a file scope variable in mm/bootmem.c for use with the
boot memory allocator.

How the last page frame in the system, max_pfn, is calculated is quite archi-
tecture specific. In the x86 case, it calls find_max_pfn() which reads through the
whole e820 map for the highest page frame. The value is also stored as a file scope
variable in mm/bootmem.c .

The value of max_low_pfn is calculated on the x86 with find_max_low_pfn()
and it marks the end of ZONE_NORMAL. This is the physical memory directly
accessible by the kernel and is related to the kernel/userspace split in the linear
address space marked by PAGE_OFFSET. The value, with the others, is stored in
mm/bootmem.c . Note that in low memory machines, the max_pfn will be the same
as the max_low_pfn.

With the three variables min_low_pfn, max_low_pfn and max_pfn, it is straight-
forward to calculate the start and end of high memory and place them as file scope
variables in arch/i386/init.c as highstart_pfn and highend_pfn. The values
are used later to initialise the high memory pages for the physical page allocator as
we will see in Section 5.5.

5.2.2. Initialising bootmem_data 41

5.2.2 Initialising bootmem_data

Once the dimensions of usable physical memory is known, one of two bootmem
initialise functions is selected and provided with the start and end PFN for the
node to be initialised. init_bootmem(), which initialises contig_page_data, is
used by UMA architectures, while init_bootmem_node() is for NUMA to initialise
the specified node. Both function are trivial and rely on init_bootmem_core() to
do the real work.

The first task of the core function is to insert this pgdat_data_t into the
pgdat_list as at the end of this function, the node is ready for use. It then records
the starting and end address for this node in its associated bootmem_data_t() and
allocates the bitmap representing page allocations. The size in bytes1 of the bitmap
required is straightforward;

mapsize =
(end_pfn− start_pfn) + 7

8

It stores the bitmap in the physical address bootmem_data_t→node_boot_start
and the virtual address pointing to the map is at bootmem_data_t→node_bootmem_map.
As there is no architecture independent way to detect “holes” in memory, the entire
of the bitmap is initialised as 1 to mark all pages allocated. It is up to the archi-
tecture dependent code to set the bits of usable pages to 0. In the case of the x86,
the function register_bootmem_low_pages() reads through all of the e820 map
and calling free_bootmem() for all usable pages to set the bit to 0 before calling
reserve_bootmem() to reserve the pages needed by the actual bitmap.

5.3 Allocating Memory

alloc_bootmem

__alloc_bootmem

__alloc_bootmem_core

alloc_bootmem_low alloc_bootmem_pages alloc_bootmem_low_pages

Figure 5.2: Call Graph: __alloc_bootmem

The reserve_bootmem() function may be used to reserve pages for use by the
caller but is very cumbersome to use to general allocations. There is four func-
tions provided for easy allocations on UMA architectures called alloc_bootmem(),

1Hence the division by 8

5.3. Allocating Memory 42

alloc_bootmem_low(), alloc_bootmem_pages() and alloc_bootmem_low_pages()
which are fully described in Table 5.1. All of these macros call __alloc_bootmem(),
as shown in the call graph in Figure 5.2, with different parameters.

Similar ones exist for NUMA which take the node as an additional parameter as
listed in Table 5.2. They are called alloc_bootmem_node(), alloc_bootmem_pages_node()
and alloc_bootmem_low_pages_node(). All of these macros call __alloc_bootmem_node()
with different parameters.

The parameters passed to either __alloc_bootmem() or __alloc_bootmem_node()
are essentially the same. They are

pgdat is the node to allocate from. It is omitted in the UMA case as it is assumed
to be contig_page_data.

size is the size of the requested allocation

align is the number of bytes to align the request to. For small allocations, they
are aligned to SMP_CACHE_BYTES which on the x86, will align to the L1
hardware cache

goal is the preferred starting address to begin allocating from. The “low” func-
tions will start from physical address 0 where the others will begin from
MAX_DMA_ADDRESS which is the maximum address DMA transfers
may be made from on this architecture

The core function for all the allocation APIs is __alloc_bootmem_core(). It
is a large function but with simple steps that can be broken down. The function
linearly scans memory starting from the goal address for a block of memory large
enough to satisfy the allocation. With the API, this address will either be 0 for
DMA friendly allocations or MAX_DMA_ADDRESS otherwise.

The clever part, and the main bulk of the function, deals with deciding if this new
allocation can be merged with the previous one. It may be merged if the following
conditions hold;

• The page used for the previous allocation (bootmem_data→pos) is adjacent
to the page found for this allocation

• The previous page has some free space in it (bootmem_data→offset != 0)

• The alignment is less than PAGE_SIZE

Regardless of the allocations may be merged or not, the pos and offset fields
will be updated to show the last page used for allocating and how much of the last
page was used. If the last page was fully used, the offset is 0.

5.4. Freeing Memory 43

5.4 Freeing Memory

In contrast to the allocation functions, only two free function are provided which
are free_bootmem() for UMA and free_bootmem_node() for NUMA. They both
call free_bootmem_core() with the only difference being that a pgdat is supplied
with NUMA.

The core function is relatively simple in comparison to the rest of the allocator.
For each full page affected by the free, the corresponding bit in the bitmap is set to
0. If it already was 0, BUG() is called to signal a double-free.

An important restriction with the free functions is that only full pages may be
freed. It is never recorded when a page is partially allocated so if only partially
freed, the full page remains reserved. This is not a major a problem as it sounds as
the allocations always persist for the lifetime of the system but is still an important
restriction for developers during boot time.

5.5 Retiring the Boot Memory Allocator

Late in the system has finished bootstrapping in the function start_kernel(), it
is safe to remove the boot allocator and all its associated data structures. Each
architecture is required to provide a function mem_init() that is responsible for
destroying the boot memory allocator and its associated structures.

The purpose of the function is quite simple. It is responsible for calculating the
dimensions of low and high memory and printing out an informational message to
the user as well as performing final initialisations of the hardware if necessary. On
the x86, the principle function of concern for the VM is the free_pages_init().

This function first tells the boot memory allocator to retire itself by call-
ing free_all_bootmem(). For NUMA architectures, the equivalent function
free_all_bootmem_node() is provided. The function is simple in principle and
performs the following tasks

• For all unallocated pages known to the allocator for this node;

– Clear the PG_reserved flag in its struct page

– Set the count to 1

– Call __free_pages() so that the buddy allocator (discussed next chapter)
can build its free lists

• Free all pages used for the bitmap and free to them to the buddy allocator

At this stage, the buddy allocator now has control of all the pages in low memory
which leaves only the high memory page. The remainder of the free_pages_init()
function is responsible for those. After free_all_bootmem() returns, it first counts
the number of reserved pages for accounting purposes and then calls the function
one_highpage_init() for every page between highstart_pfn and highend_pfn.

5.5. Retiring the Boot Memory Allocator 44

mem_init

set_max_mapnr_init free_pages_init nr_free_pages test_wp_bit

free_all_bootmem page_is_ram

free_all_bootmem_core

__free_pages

do_test_wp_bit

Figure 5.3: Call Graph: mem_init

This function simple clears the PG_reserved flag, sets the PG_highmem flag,
sets the count to 1 and calls __free_pages() to release it to the buddy allocator in
the same manner free_all_bootmem_core() did.

At this point, the bootmem allocator is well and truly retired and the buddy
allocator is the main physical page allocator for the system. An interesting feature
to note is that not only is the data for the boot allocator removed but also the code.
All the init function declarations used for bootstrapping the system are marked
__init such as the following;

321 unsigned long __init free_all_bootmem (void)

All of these functions are placed together in the .init section by the linker. On
the x86, the function free_initmem() walks through all pages from__init_begin
to __init_end and frees up the pages to the buddy allocator. With this method,
Linux can free up a considerable amount of memory2 that is used by bootstrapping
code that is no longer required.

227 pages on the machine this document is composed on

5.5. Retiring the Boot Memory Allocator 45

init_bootmem(unsigned long start, unsigned long page)
This initialises the memory between 0 and the PFN page. The begin-

ning of usable memory is at the PFN start

reserve_bootmem(unsigned long addr, unsigned long size)
Mark the pages between the address addr and addr+size reserved.

Requests to partially reserve a page will result in the full page being
reserved

free_bootmem(unsigned long addr, unsigned long size)
Mark the pages between the address addr and addr+size free

alloc_bootmem(unsigned long size)
Allocate size number of bytes from ZONE_NORMAL. The allocation

will be aligned to the L1 hardware cache to get the maximum benefit from
the hardware cache

alloc_bootmem_low(unsigned long size)
Allocate size number of bytes from ZONE_DMA. The allocation will

be aligned to the L1 hardware cache

alloc_bootmem_pages(unsigned long size)
Allocate size number of bytes from ZONE_NORMAL aligned on a

page size so that full pages will be returned to the caller

alloc_bootmem_low_pages(unsigned long size)
Allocate size number of bytes from ZONE_NORMAL aligned on a

page size so that full pages will be returned to the caller

bootmem_bootmap_pages(unsigned long pages)
Calculate the number of pages required to store a bitmap representing

the allocation state of pages number of pages

free_all_bootmem()
Used at the boot allocator end of life. It cycles through all pages in

the bitmap. For each one that is free, the flags are cleared and the page
is freed to the physical page allocator (See next chapter) so the runtime
allocator can set up its free lists

Table 5.1: Boot Memory Allocator API for UMA Architectures

5.5. Retiring the Boot Memory Allocator 46

init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, un-
signed long startpfn, unsigned long endpfn)

For use with NUMA architectures. It initialise the memory between
PFNs startpfn and endpfn with the first usable PFN at freepfn. Once
initialised, the pgdat node is inserted into the pgdat_list

reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size)

Mark the pages between the address addr and addr+size on the spe-
cified node pgdat reserved. Requests to partially reserve a page will result
in the full page being reserved

free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, un-
signed long size)

Mark the pages between the address addr and addr+size on the spe-
cified node pgdat free

alloc_bootmem_node(pg_data_t *pgdat, unsigned long size)
Allocate size number of bytes from ZONE_NORMAL on the spe-

cified node pgdat. The allocation will be aligned to the L1 hardware
cache to get the maximum benefit from the hardware cache

alloc_bootmem_pages_node(pg_data_t *pgdat, unsigned long size)
Allocate size number of bytes from ZONE_NORMAL on the spe-

cified node pgdat aligned on a page size so that full pages will be returned
to the caller

alloc_bootmem_low_pages_node(pg_data_t *pgdat, unsigned long
size)

Allocate size number of bytes from ZONE_NORMAL on the spe-
cified node pgdat aligned on a page size so that full pages will be returned
to the caller

bootmem_bootmap_pages(unsigned long pages)
Same function as used for the UMA case. Calculate the number of

pages required to store a bitmap representing the allocation state of
pages number of pages

free_all_bootmem_node(pg_data_t *pgdat)
Used at the boot allocator end of life. It cycles through all pages in

the bitmap for the specified node. For each one that is free, the page
flags are cleared and the page is freed to the physical page allocator (See
next chapter) so the runtime allocator can set up its free lists

Table 5.2: Boot Memory Allocator API for NUMA Architectures

Chapter 6

Physical Page Allocation

This section describes how physical pages are managed and allocated in Linux.
The principle algorithm used is the Binary Buddy Allocator, devised by
Knowlton[Kno65] and further described by Knuth[Knu68]. It is has been shown
to be extremely fast in comparison to other allocators[KB85].

6.1 Allocator API

Linux provides a quite sizable API for the allocation of page frames. All of them
take a gfp_mask which determines how the allocator will behave which is discussed
in Section 6.5.

As the allocation API functions eventually map onto one function the API’s are
there so the correct node and zone will be chosen for the allocation. Different users
will need different zones such as DMA for certain device drivers or NORMAL for
disk buffers. A full list of page allocation API’s are listed in Table 6.1.

There is a similar API for the freeing of pages. They are a lot simpler and exist
to help with the order of the block to free. One disadvantage of a buddy allocator
is that the caller has to remember the size of the original allocation. The API for
freeing is listed in Table 6.2.

6.2 Managing Free Blocks

Pages are divided up into different sized blocks each of which is a power of two
number of pages large. An array of free_area_t structs is maintained for each
order that points to a linked list of blocks of pages that are free as indicated by
Figure 6.1. Hence, the 0th element of the array will point to a list of free page
blocks of size 20 or 1 page, the 1st element will be a list of 21 (2) pages up to
2MAX_ORDER−1 number of pages, the MAX_ORDER been currently defined as
10. This eliminates the chance that a larger block will be split to satisfy a request
where a smaller block would have sufficed. The page blocks are maintained on a
linear linked list via page→list.

47

6.2. Managing Free Blocks 48

alloc_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages and returns a struct page

__get_dma_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages from the DMA zone and return a

struct page

__get_free_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages and return a virtual address

alloc_page(unsigned int gfp_mask)
Allocate a single page and return a struct address

__get_free_page(unsigned int gfp_mask)
Allocate a single page and return a virtual address

get_free_page(unsigned int gfp_mask)
Allocate a single page, zero it and return a virtual address

Table 6.1: Physical Pages Allocation API

Each zone has a free_area_t struct array called free_area[MAX_ORDER]. It is
declared in include/linux/mm.h as follows

22 typedef struct free_area_struct {
23 struct list_head free_list;
24 unsigned long *map;
25 } free_area_t;

free_list A linked list of free page blocks
map A bitmap representing the state of a pair of buddies

Linux saves space by only using one bit to represent each pair of buddies. Each
time a buddy is alloc-ed or freed, the bit representing the pair of buddies is toggled
so that the bit is zero if the pair of pages are both free or both full and 1 if only
one buddy is in use. To toggle the correct bit, the macro MARK_USED in
page_alloc.c is used. It is declared as follows

164 #define MARK_USED(index, order, area) \
165 __change_bit((index) >> (1+(order)), (area)->map)

index is the index of the page within the global mem_map array. By shifting
it right by 1+order bits, the bit within map representing the pair of buddies is
revealed.

6.3. Allocating Pages 49

__free_pages(struct page *page, unsigned int order)
Free an order number of pages from the given page

__free_page(struct page *page)
Free a single page

free_page(void *addr)
Free a page from the given virtual address

Table 6.2: Physical Pages Free API

Figure 6.1: Free page block management

6.3 Allocating Pages

For allocation, the buddy system works by rounding requests for a number of pages
up to the nearest power of two number of pages which is referred to as the order
order of the allocation. If a free block can not be found of the requested order, a
higher order block is split into two buddies. One is allocated and the other is placed
on the free list for the lower order. Figure 6.3 shows where a 24 block is split and
how the buddies are added to the free lists until a block for the process is available.
When the block is later freed, the buddy will be checked. If both are free, they are
merged to form a higher order block and placed on the higher free list where its
buddy is checked and so on. If the buddy is not free, the freed block is added to the
free list at the current order. During these list manipulations, interrupts have to be
disabled to prevent an interrupt handler manipulating the lists while a process has
them in an inconsistent state. This is achieved by using an interrupt safe spinlock.

The second decision is for which node to use. Linux uses a node-local allocation
policy which states the memory bank associated with the running CPU is used for
allocating pages. Here, the function _alloc_pages() is what is important. This
function is different depending on whether a UMA (function in mm/page_alloc.c)
or NUMA (function in mm/numa.c) architecture is in use.

6.3. Allocating Pages 50

alloc_pages

_alloc_pages

__alloc_pages

balance_classzone rmqueue

try_to_free_pages_zone __free_pages_ok expand

Figure 6.2: Call Graph: alloc_pages

No matter which API is used, they all will use __alloc_pages() in mm/page_alloc.c
for all the real work and it is never called directly, see Figure 6.2 for the call graph.
This function selects which zone to allocate from. It starts with the requested zone
but will fall back to other zones if absolutely necessary. What zones to fall back on
are decided at boot time by the function build_zonelists() but generally HIGH-
MEM will fall back to NORMAL and that in turn will fall back to DMA. If number
of free pages reaches the pages_low watermark, it will wake kswapd() to begin free-
ing up pages from zones and if memory is extremely tight, the caller will do the
work of kswapd itself.

Figure 6.3: Allocating physical pages

The function rmqueue() is what allocates the block of pages or splits higher level

6.4. Free Pages 51

blocks if one of the appropriate size is not available.

6.4 Free Pages

__free_pages

__free_pages_ok

lru_cache_del

__lru_cache_del

Figure 6.4: Call Graph: __free_pages

The principle function for freeing pages is __free_pages_ok(). It should not
be called directly, instead the function __free_pages() should be used which does
some simple checks first. See Figure 6.4 for its call graph.

When a buddy is freed, Linux tries to coalesce the buddies together immediately
if possible. This is not the best method as the worst case scenario will have many
coalescing followed by the immediate splitting of the same blocks[Vah96]. At time of
writing, work is taking place on implementing a lazy buddy coalescing scheme[BL89].

To detect if if the buddies can be merged or not, Linux checks the bit from the
free_area→map to determine the state of the buddy. As the buddy has just been
freed, it is that at least one is definitely free because a buddy has just been freed.
If after toggling the bit it is 0, then the buddies can be merged.

Calculating the address is a well known concept [Knu68]. Because the allocations
are always in blocks of size 2k, the address of the block, or at least its offset within
zone_mem_map will also be a power of 2k. The end result is that there will always
be at least k number of zeros to the right of the address. To get the address of the
buddy, the kth bit from the right is examined. If it is 0, then the buddy will have
this bit flipped. To get this bit, Linux creates a mask which is calculated as

mask = (∼ 0 << k)

6.5. GFP Flags 52

The mask we are interested in is

imask = 1+ ∼ mask

Linux takes a shortcut in calculating this by noting that

imask = −mask = 1+ ∼ mask

Once the buddy is merged, it is removed for the free list and the newly coalesced
pair moves to the next higher order to see if it may also be merged.

6.5 GFP Flags

A persistent concept through the whole VM is the GFP (Get Free Page) flags.
They determine how the allocator and kswapd may behave for the allocation and
freeing of pages. For example, an interrupt handler may not sleep so it will not have
the __GFP_WAIT flag set as this flag indicates the caller may sleep. There is three
sets of GFP flags, all defined in include/linux/mm.h .

The first is zone modifiers listed in Table 6.3. These flags indicate that the caller
must try to allocate from a particular zone. The reader will note there is not a zone
modifier for ZONE_NORMAL. This is because the zone modifier flag is used as an
offset within an array and 0 implicitly means allocate from ZONE_NORMAL.

Flag Description
__GFP_DMA Allocate from ZONE_DMA if possible
__GFP_HIGHMEM Allocate from ZONE_HIGHMEM if possible
GFP_DMA Alias for __GFP_DMA

Table 6.3: Low Level GFP Flags Affecting Zone Allocation

The next flags are action modifiers listed in Table 6.4. They change the behavior
of the VM and what the calling process may do. The low level flags on their own are
too primitive to be easily used. It is difficult to know what the correct combinations
are for each instance so a few high level combinations are defined and listed in
Table 6.5. For clarity the __GFP_ is removed from the table combinations so, the
__GFP_HIGH flag will read as HIGH below. The combinations to form the high
level flags are listed in Table 6.6

To help understand this, take GFP_ATOMIC as an example. It has only the
__GFP_HIGH flag set. This means it is high priority, will use emergency pools (if
they exist) but will not sleep, perform IO or access the filesystem. This flag would
be used by an interrupt handler for example.

6.5.1 Process Flags

A process may also set flags in the task struct which affects allocator behavior. The
full list of process flags are defined in include/linux/sched.h but only the ones
affecting VM behavior are listed in Table 6.7.

6.6. Avoiding Fragmentation 53

Flag Description
__GFP_WAIT Indicates that the caller is not high priority and

can sleep or reschedule
__GFP_HIGH Used by a high priority or kernel process. Ker-

nel 2.2.x used it to determine if a process could
access emergency pools of memory. In 2.4.x ker-
nels, it does not appear to be used

__GFP_IO Indicates that the caller can perform low level
IO. In 2.4.x, the main affect this has is determ-
ining if try_to_free_buffers() can flush buf-
fers or not. It is used by at least one journaled
filesystem

__GFP_HIGHIO Determines that IO can be performed on
pages mapped in high memory. Only used in
try_to_free_buffers()

__GFP_FS Indicates if the caller can make calls to the
filesystem layer. This is used when the caller is
filesystem related, the buffer cache for instance,
and wants to avoid recursively calling itself

Table 6.4: Low Level GFP Flags Affecting Allocator Behavior

6.6 Avoiding Fragmentation

One important problem that must be addressed with any allocator is the problem
of internal and external fragmentation. External fragmentation is the inability to
service a request because the available memory exists only in small blocks. Internal
fragmentation is defined as the wasted space where a large block had to be assigned
to service a small request. In Linux, external fragmentation is not a serious problem
as large requests for contiguous pages are rare and usually vmalloc (See Chapter 7)
is sufficient to service the request. The lists of free blocks ensure that large blocks
do not have to be split unnecessarily.

Internal fragmentation is the single most serious failing of the binary buddy
system. While fragmentation is expected to be in the region of 28%[WJNB95],
it has been shown that it can be in the region of 60%, in comparison to just 1%
with the first fit allocator[JW98]. It has also been shown that using variations of
the buddy system will not help the situation significantly[PN77]. To address this
problem, Linux uses a slab allocator [Bon94] to carve up pages into small blocks of
memory for allocation [Tan01]. With this combination of allocators, the kernel can
ensure that the amount of memory wasted due to internal fragmentation is kept to
a minimum.

6.6. Avoiding Fragmentation 54

High Level Flag Low Level Flag Combination
GFP_ATOMIC HIGH
GFP_NOIO HIGH | WAIT
GFP_NOHIGHIO HIGH | WAIT | IO
GFP_NOFS HIGH | WAIT | IO | HIGHIO
GFP_KERNEL HIGH | WAIT | IO | HIGHIO | FS
GFP_NFS HIGH | WAIT | IO | HIGHIO | FS
GFP_USER WAIT | IO | HIGHIO | FS
GFP_HIGHUSER WAIT | IO | HIGHIO | FS | HIGHMEM
GFP_KSWAPD WAIT | IO | HIGHIO | FS

Table 6.5: Low Level GFP Flag Combinations For High Level

6.6. Avoiding Fragmentation 55

High Level Flag Description
GFP_ATOMIC This flag is used whenever the caller cannot sleep

and must be serviced if at all possible. Any inter-
rupt handler that requires memory must use this
flag to avoid sleeping or performing IO. Many
subsystems during init will use this system such
as buffer_init() and inode_init()

GFP_NOIO This is used by callers who are already perform-
ing an IO related function. For example, when
the loop back device is trying to get a page for
a buffer head, it uses this flag to make sure it
will not perform some action that would result
in more IO. If fact, it appears the flag was in-
troduced specifically to avoid a deadlock in the
loopback device.

GFP_NOHIGHIO This is only used in one place in
alloc_bounce_page() during the creating
of a bounce buffer for IO in high memory

GFP_NOFS This is only used by the buffer cache and filesys-
tems to make sure they do not recursively call
themselves by accident

GFP_KERNEL The most liberal of the combined flags. It in-
dicates that the caller is free to do whatever it
pleases. Strictly speaking the difference between
this flag and GFP_USER is that this could use
emergency pools of pages but that is a no-op on
2.4.x kernels

GFP_NFS This flag is defunct. In the 2.0.x series, this
flag determined what the reserved page size was.
Normally 20 free pages were reserved. If this flag
was set, only 5 would be reserved. Now it is not
treated differently anywhere

GFP_USER Another flag of historical significance. In the
2.2.x series, an allocation was given a LOW, ME-
DIUM or HIGH priority. If memory was tight, a
request with GFP_USER (low) would fail where
as the others would keep trying. Now it has no
significance and is not treated any different to
GFP_KERNEL

GFP_HIGHUSER This flag indicates that the allocator should al-
locate from ZONE_HIGHMEM if possible. It is
used when the page is allocated on behalf of a
user process

GFP_KSWAPD More historical significance. In reality this is not
treated any different to GFP_KERNEL

Table 6.6: High Level GFP Flags Affecting Allocator Behavior

6.6. Avoiding Fragmentation 56

Flag Description
PF_MEMALLOC This flags the process as a memory allocator.

kswapd sets this flag and it is set for any pro-
cess that is about to be killed by the OOM killer.
It tells the buddy allocator to ignore zone water-
marks and assign the pages if at all possible

PF_MEMDIE This is set my the OOM killer. This functions the
same as the PF_MEMALLOC flag in telling the
page allocator to give pages if at all possible as
the process is about to die

PF_FREE_PAGES Set when the buddy allocator calls
try_to_free_pages() itself to indicate that
free pages should be reserved for the calling pro-
cess in __free_pages_ok() instead of returning
to the free lists

Table 6.7: Process Flags Affecting Allocator Behavior

Chapter 7

Non-Contiguous Memory Allocation

It is preferable when dealing with large amounts of memory to use physically con-
tiguous physical pages in memory both for cache related and memory access latency
issues. Unfortunately, due to external fragmentation problems with the buddy
allocator, this is not always possible. Linux provides a mechanism via vmalloc
where non-contiguous physically memory can be used that is contiguous in virtually
memory.

The region to be allocated must be a multiple of the hardware page size and re-
quires altering the kernel page tables and there is a limitation on how much memory
can be mapped with vmalloc() because only the upper region of memory after
PAGE_OFFSET is available for the kernel (1GiB on an x86). As a result, it is
used sparingly in the core kernel. In 2.4.20, it is only used for storing swap map
information and for loading kernel modules into memory.

7.1 Kernel Address Space

The linear virtual address space that is important to the kernel is shown in Figure
7.1. The area up until PAGE_OFFSET is reserved for the process and changes
with every context switch. In x86, this is defined as 0xC0000000 or 3GiB leaving
the upper 1GiB of memory for the kernel.

After the process address space, kernel image is mapped followed by the physical
page mem_map is stored which is the struct page for each physical page frame in
the system. Between the physical memory map and the vmalloc address space, there
is a gap of space VMALLOC_OFFSET in size. On the x86, this gap is 8MiB
big and exists to guard against out of bounds errors.

In low memory systems, the remaining amount of the virtual address space,
minus a 2 page gap, is used by vmalloc for representing non-contiguous memory in
a contiguous virtual address space. In high memory systems, the area extends as
far as PKMAP_BASE minus the 2 page gap. In that case, the remaining area
is used for mapping high memory pages into the kernel virtual address with kmap
and kunmap.

57

7.2. Describing Virtual Memory Areas 58

Figure 7.1: Kernel Address Space

7.2 Describing Virtual Memory Areas

The vmalloc address space is managed with a resource map allocator[Vah96]. The
struct vm_struct is responsible for storing the base,size pairs. It is defined in
include/linux/vmalloc.h as

14 struct vm_struct {
15 unsigned long flags;
16 void * addr;
17 unsigned long size;
18 struct vm_struct * next;
19 };

flags are set to either VM_ALLOC in the case of use with vmalloc or VM_IOREMAP
when ioremap is used to map high memory into the kernel virtual address space

addr is the start of the area

size is its size

next is a pointer to the next vm_struct. They are ordered by address and the
list is protected by the vmlist_lock lock.

As is clear, the areas are linked together via the next field and area ordered by
address for easy searches. Each area is separated by at least one page to protect
against overruns. This is illustrated by the gaps in 7.2

When the kernel wishes to allocate a new area, the vm_struct list is searched
literally by the function get_vm_area(). Space for the struct is allocated with
kmalloc(). When the virtual area is used for ioremapping, this function will be
called directly to map the requested area.

7.3. Allocating A Non-Contiguous Area 59

Figure 7.2: VMalloc Address Space

7.3 Allocating A Non-Contiguous Area

The functions vmalloc(), vmalloc_dma() and vmalloc_32() are provided to al-
locate a memory area that is contiguous in virtual address space. They all take a
single parameter size which is rounded up to the nearest page size. They all return
a linear address for the new allocated area.

vmalloc

__vmalloc

get_vm_area vmalloc_area_pages

pmd_alloc alloc_area_pmd

pte_alloc alloc_area_pte

Figure 7.3: Call Graph: vmalloc

As is clear from the call graph shown in Figure 7.3, there is two steps to allocating
the area.

The first step with get_vm_area() finds a region large enough to store the
request. It searches through a linear linked list of vm_structs and returns a new
struct describing the allocated region.

The second step is to allocate the necessary PGD entries with vmalloc_area_pages(),
PMD entries with alloc_area_pmd() and PTE entries with alloc_area_pte().
Once allocated there is a special case in the page fault handling code which will
allocate the necessary pages as necessary.

7.4. Freeing A Non-Contiguous Area 60

vmalloc(unsigned long size)
Allocate a number of pages in vmalloc space that satisfy the requested

size

vmalloc_dma(unsigned long size)
Allocate a number of pages from ZONE_DMA

vmalloc_32(unsigned long size)
Allocate memory that is suitable for 32 bit addressing. This ensures

it is in ZONE_NORMAL at least which some PCI devices require

Table 7.1: Non-Contiguous Memory Allocation API

7.4 Freeing A Non-Contiguous Area

vfree

vmfree_area_pages

flush_tlb_all free_area_pmd

free_area_pte

__free_pages

Figure 7.4: Call Graph: vfree

The function vfree() is responsible for freeing a virtual area. It linearly
searches the list of vm_structs looking for the desired region and then calls
vmfree_area_pages() on the region of memory to be freed.

The function vmfree_area_pages() is the exact opposite of vmalloc_area_pages().
It walks the page tables freeing up the page table entries and associated pages for
the region.

7.4. Freeing A Non-Contiguous Area 61

vfree(void *addr)
Free a region of memory allocated with vmalloc, vmalloc_dma or

vmalloc_32

Table 7.2: Non-Contiguous Memory Free API

Chapter 8

Slab Allocator

In this chapter, the general purpose allocator is described. It is a slab allocator which
is very similar in many respects to the general kernel allocator used in Solaris[JM01]
and is heavily based on the first slab allocator paper by Bonwick[Bon94] with
many improvements that bear a close resemblance to those described in his later
paper[BA01]. We will begin with a quick overview of the allocator followed by a
description of the different structures used before giving an in-depth tour of each
task the allocator is responsible for.

The basic idea behind the slab allocator is to have caches of commonly used
objects kept in an initialised state available for use by the kernel. Without an
object based allocator, the kernel will spend much of its time allocating, initialising
and freeing the same object. The slab allocator aims to to cache the freed object so
that the basic structure is preserved between uses[Bon94].

The slab allocator consists of a variable number of caches that are linked together
on a doubly linked circular list called a cache chain. A cache, in the context of
the slab allocator, is a manager for a number of objects of a particular type like the
mm_struct or fs_cache cache and is managed by a struct kmem_cache_s discussed
in detail later. The caches are linked via the next field in the cache struct.

Each cache maintains block of contiguous pages in memory called slabs which are
carved up into small chunks for the data structures and objects the cache manages.
The structure of the allocator as described so far is illustrated in Figure 8.1.

The slab allocator has three principle aims;

• The allocation of small blocks of memory to help eliminate internal fragment-
ation that would be otherwise caused by the buddy system

• The caching of commonly used objects so that the system does not waste
time allocating, initialising and destroying objects. Benchmarks on Solaris
showed excellent speed improvements for allocations with the slab allocator in
use[Bon94]

• The better utilisation of hardware cache by aligning objects to the L1 or L2
caches.

62

CHAPTER 8. SLAB ALLOCATOR 63

pages

object object

pages

 object object

pages

 object object

slabs_full

slabs

slabs_partial

slabs

slabs_free

 slabs

cache nextcachelastcache

Figure 8.1: Layout of the Slab Allocator

To help eliminate internal fragmentation normally caused by a binary buddy
allocator, two sets of caches of small memory buffers ranging from 25 (32) bytes
to 217 (131072) bytes are maintained. One cache set is suitable for use with DMA
devices. These caches are called size-X and size-X(DMA) where X is the size of the
allocation and a function kmalloc() (See Section 8.4.1) is provided for allocating
them. With this, the single greatest problem with the low level page allocator is
addressed. The sizes caches are discussed in further detail in Section 8.4.

The second task of the slab allocator is to maintain caches of commonly used
objects. For many structures used in the kernel, the time needed to initialise an
object is comparable or exceeds the cost of allocating space for it. When a new slab
is created, a number of objects are packed into it and initialised using a constructor
if available. When an object is freed, it is left in its initialised state so that object
allocation will be quick.

The final task is hardware cache utilization. If there is space left over after
objects are packed into a slab, the remaining space is used to color the slab. By
giving objects in different slabs different offsets, they will be assigned difference
lines in the CPU cache helping ensure that objects from the same cache will not

8.1. Caches 64

constantly flush each other. With this, space that would otherwise be wasted fulfills
a new function. Linux does not attempt to color pages[Kes91], or order where
objects are placed such as those described for data caches[GAV95] or code[HK97]
but the scheme used does help improve cache line usage. Cache colouring is further
discussed in section 8.1.5. On an SMP system, a further step is taken to help cache
utilization where each cache has a small array of objects for each CPU which is
discussed further in Section 8.5.

The slab allocator provides the additional option of slab debugging if the option is
set at compile time with CONFIG_SLAB_DEBUG. Two debugging features are providing,
red zoning and object poisoning. With red zoning, a marker is placed at either end
of the object. If this mark is disturbed, the allocator knows the object was buffer
overflowed and reports it. Poisoning an object will fill it with a known pattern at
slab creation and after a free. At allocation, this pattern is examined and if it is
changed, the allocator knows that the object was used before it was allocated and
flags it.

8.1 Caches

One cache exists for each type of object that is to be cached. For a full list of caches
available on a running system, run cat /proc/slabinfo . This file gives some basic
information on the caches. A excerpt from the output of this file looks like

slabinfo - version: 1.1 (SMP)
kmem_cache 80 80 248 5 5 1 : 252 126
urb_priv 0 0 64 0 0 1 : 252 126
tcp_bind_bucket 15 226 32 2 2 1 : 252 126
inode_cache 5714 5992 512 856 856 1 : 124 62
dentry_cache 5160 5160 128 172 172 1 : 252 126
mm_struct 240 240 160 10 10 1 : 252 126
vm_area_struct 3911 4480 96 112 112 1 : 252 126
size-64(DMA) 0 0 64 0 0 1 : 252 126
size-64 432 1357 64 23 23 1 : 252 126
size-32(DMA) 17 113 32 1 1 1 : 252 126
size-32 850 2712 32 24 24 1 : 252 126

As is obvious, the fields do not have a header to indicate what each column
means. Each of them correspond to a field in the struct kmem_cache_s structure.
The fields listed here are

cache-name A human readable name such as “vm_area_struct”

num-active-objs Number of objects that are in use

total-objs How many are available in total including unused

obj-size The size of each object, typically quite small

8.1.1. Cache Descriptor 65

num-active-slabs Number of slabs containing objects that are active

total-slabs How many slabs in total exist

num-pages-per-slab The pages required to create one slab, typically 1

If SMP is enabled like in the example excerpt, two more fields will be displayed after
a colon. This refer to the per CPU cache described in the last section. The fields
are

limit is he number of free objects the pool can have before half of it is given to
the global free pool

batchcount The number of objects alloc-ed for the processor when no objects are
free

To speed allocation and freeing of objects and slabs they are arranged into three
lists; slabs_full, slabs_partial and slabs_free. slabs_full has all its objects in
use. slabs_partial has free objects in it and so is a prime candidate for allocation
of objects. slabs_free has no allocated objects and so is a prime candidate for slab
destruction.

8.1.1 Cache Descriptor

All information describing a cache is stored in a struct kmem_cache_s declared
in mm/slab.c. This is an extremely large struct and so will be described in parts.

190 struct kmem_cache_s {
193 struct list_head slabs_full;
194 struct list_head slabs_partial;
195 struct list_head slabs_free;
196 unsigned int objsize;
197 unsigned int flags;
198 unsigned int num;
199 spinlock_t spinlock;
200 #ifdef CONFIG_SMP
201 unsigned int batchcount;
202 #endif
203

Most of these fields are of interest when allocating or freeing objects.

slabs_* are the three lists the slabs are kept on described above

objsize is the size of each object

flags determine how parts of the allocator will behave when dealing with the
cache. See Section 8.1.2

8.1.1. Cache Descriptor 66

num The number of objects contained in each slab

206 unsigned int gfporder;
209 unsigned int gfpflags;
210
211 size_t colour;
212 unsigned int colour_off;
213 unsigned int colour_next;
214 kmem_cache_t *slabp_cache;
215 unsigned int growing;
216 unsigned int dflags;
217
219 void (*ctor)(void *, kmem_cache_t *, unsigned long);
222 void (*dtor)(void *, kmem_cache_t *, unsigned long);
223
224 unsigned long failures;
225

This block deals with fields of interest when allocating or freeing slabs from the
cache.

gfporder is the size of the slab in pages. The slab is 2gfporder pages big as required
by the buddy allocator

gfpflags is the GFP flags to use when allocating memory. See Section 6.5

colour is the number of different cache lines that can be used. This will be further
discussed in Section 8.1.5

colour_off is the byte alignment to keep slabs at. For example, slabs for the
size-X caches are aligned on the L1 cache

colour_next is the next colour line to use. This value wraps back to 0 when it
reaches colour

growing is set to indicate if the cache is growing or not. If it is, it is much less
likely this cache will be selected to reap free slabs under memory pressure

dflags are dynamic flags. See Section 8.1.3

ctor is for a complex object which provides a constructor function to be called on
each new object. This is a pointer to that function. May be NULL

dtor is the object destructor. May be NULL

failures does not appear to be used anywhere

227 char name[CACHE_NAMELEN];
228 struct list_head next;

8.1.1. Cache Descriptor 67

These are set during cache creation

name is the human readable name of the cache

next is the next cache on the cache chain

229 #ifdef CONFIG_SMP
231 cpucache_t *cpudata[NR_CPUS];
232 #endif

cpudata is the per-cpu data. Discussed further in Section 8.5

233 #if STATS
234 unsigned long num_active;
235 unsigned long num_allocations;
236 unsigned long high_mark;
237 unsigned long grown;
238 unsigned long reaped;
239 unsigned long errors;
240 #ifdef CONFIG_SMP
241 atomic_t allochit;
242 atomic_t allocmiss;
243 atomic_t freehit;
244 atomic_t freemiss;
245 #endif
246 #endif
247 };

These figures are only available if the CONFIG_SLAB_DEBUG option is
set during compile time. They are all beancounters and not of general interest.

num_active is the number of active objects in the cache

num_allocations is the total number of objects that have been allocated on this
cache

high_mark is the highest value num_active has been to date

grown is the number of times kmem_cache_grow() has been called

reaped refers to the number of times this cache has been reaped

errors is never used

allochit is the number of times an allocation has used the per-cpu cache

allocmiss is the number of times an allocation has missed the per-cpu cache

freehit is the number of times a free was placed on a per-cpu cache

freemiss is the number of times an object was freed and placed on the global pool

8.1.2. Cache Static Flags 68

8.1.2 Cache Static Flags

A number of flags are set at cache creation time that remain the same for the
lifetime of the cache. They affect how the slab is structured and how objects are
stored within it. All the flags are stored in a bitmask in the flags field of the
cache descriptor. The full list of possible flags that may be used are declared in
include/linux/slab.h .

There is three principle sets. The first set are internal flags which are set only by
the slab allocator and are listed in Table 8.2. At time of writing, the only relevant
flag is the CFGS_OFF_SLAB flag which determines where the slab descriptor is stored.

The second set are set by the cache creator and they determine how the allocator
treats the slab and how objects are stored. They are listed in Table 8.3.

The last flags are only available if the compile option CONFIG_SLAB_DEBUG is set.
They determine what additional checks will be made to slabs and objects and are
primarily of interest only when new caches are being developed.

To prevent callers using the wrong flags a CREATE_MASK is defined in mm/slab.c
consisting of all the allowable flags. When a cache is being created, the requested
flags are compared against the CREATE_MASK and reported as a bug if invalid flags
are used.

8.1.3 Cache Dynamic Flags

The dflags field has only one flag DFLGS_GROWN but it is important. The
flag is set during kmem_cache_grow() so that kmem_cache_reap() will be unlikely
to choose the cache for reaping. When the function does find a cache with this flag
set, it skips the cache and removes the flag.

8.1.4 Cache Allocation Flags

The flags correspond to the GFP page flag options for allocating pages for slabs.
Callers sometimes call with either SLAB_ or GFP_ flags, but they really should
use only SLAB_* flags. They correspond directly to the flags described in section
6.5 so will not be discussed in detail here. It is presumed the existence of these flags
are for clarity and in case the slab allocator needed to behave differently in response
to a particular flag but in reality, it doesn’t.

8.1.5 Cache Colouring

To utilize hardware cache better, the slab allocator will offset objects in different
slabs by different amounts depending on the amount of space left over in the slab.
The offset is in units of BYTES_PER_WORD unless SLAB_HWCACHE_ALIGN is set in which
case it is aligned to blocks of L1_CACHE_BYTES for alignment to the L1 hardware
cache.

During cache creation, it is calculated how many objects can fit on a slab (See
Section 8.2.7) and what the bytes wasted is. Based on that, two figures are calculated

8.1.6. Cache Creation 69

for the cache descriptor

colour is the number of different offsets that can be used

colour_off is the amount to offset each objects by

With the objects offset, they will use different lines on the associative hardware
cache. Therefore, objects from slabs are less likely to overwrite each other in memory.

The result of this is easiest explained with example. Let us say that s_mem
(the address of the first object) on the slab is 0 for convenience, that 100 bytes are
wasted on the slab and alignment is to be at 32 bytes to the L1 Hardware Cache on
a Pentium 2.

In this scenario, the first slab created will have its objects start at 0. The second
will start at 32, the third at 64, the fourth at 96 and the fifth will start back at 0.
With this, objects from each of the slabs will not hit the same hardware cache line
on the CPU. The value of colour is 3 and colour_off is 32.

8.1.6 Cache Creation

The function kmem_cache_create() is responsible for creating new caches and
adding them to the cache chain. The tasks that are taken to create a cache are

• Perform basic sanity checks for bad usage

• Perform debugging checks if CONFIG_SLAB_DEBUG is set

• Allocate a kmem_cache_t from the cache_cache slab cache

• Align the object size to the word size

• Calculate how many objects will fit on a slab

• Align the slab size to the hardware cache

• Calculate colour offsets

• Initialise remaining fields in cache descriptor

• Add the new cache to the cache chain

Figure 8.2 shows the call graph relevant to the creation of a cache and is more
fully described in the code commentary.

8.1.7. Cache Reaping 70

kmem_cache_create

kmem_cache_alloc kmem_cache_estimate kmem_find_general_cachep enable_cpucache

__kmem_cache_alloc kmem_tune_cpucache

Figure 8.2: Call Graph: kmem_cache_create

8.1.7 Cache Reaping

When a slab becomes free, it is placed on the slabs_free list for future use. Caches
do not automatically shrink themselves so when kswapd notices that memory is
tight, it calls kmem_cache_reap() to free some memory. This function is responsible
for selecting a cache that will be required to shrink its memory usage. It is worth
noting is that cache reaping does account what node the memory is under pressure.
This means that with a NUMA or high memory machine, it is possible the kernel will
spend a lot of time freeing memory from regions that are under no memory pressure
but this is not a problem for architectures like the x86 which has only one bank of
memory. As the vast majority of the cache memory will be using ZONE_NORMAL,
the zone consideration is a serious problem.

kmem_cache_reap

__free_block kmem_slab_destroy

kmem_cache_free_one kmem_freepages kmem_cache_free

Figure 8.3: Call Graph: kmem_cache_reap

The call graph in Figure 8.3 is deceptively simple as the task of selecting the
proper cache to reap is quite long. In case there is many caches in the system,

8.1.8. Cache Shrinking 71

only REAP_SCANLEN1 caches are examined in each call. The last cache to be
scanned is stored in the variable clock_searchp so as not to examine the same
caches over and over again. For each scanned cache, the reaper does the following

• Check flags for SLAB_NO_REAP and skip if set

• If the cache is growing, skip it

• if the cache has grown recently (DFLGS_GROWN is set in dflags), skip it
but clear the flag so it will be reaped the next time

• Count the number of free slabs in slabs_free and calculate how many pages
that would free in the variable pages

• If the cache has constructors or large slabs, adjust pages to make it less likely
for the cache to be selected.

• If the number of pages that would be freed exceeds REAP_PERFECT, free half
of the slabs in slabs_free

• Otherwise scan the rest of the caches and select the one that would free the
most pages for freeing half of its slabs in slabs_free

8.1.8 Cache Shrinking

When a cache is selected to shrink itself, the steps it takes are simple and brutal

• Delete all objects in the per CPU caches

• Delete all slabs from slabs_free unless the growing flag gets set

Linux is nothing, if not subtle.
Two varieties of shrink functions exist with confusingly similar names. kmem_cache_shrink()

removes all slabs from slabs_free and returns the number of pages freed as a result.
This is the principle function exported for use by the slab allocator users.

The second function __kmem_cache_shrink() frees all slabs from slabs_free
and then verifies that slabs_partial and slabs_full are empty. This is for in-
ternal use only and is important during cache destruction when it doesn’t matter
how many pages are freed, just that the cache is empty.

8.1.9 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache with the
function kmem_cache_destroy(). It is important the cache is properly destroyed as
two caches of the same name are not allowed to exist. Core kernel code often does
not bother to destroy its caches as their existence persists for the life of the system.
The steps taken to destroy a cache are

1Defined statically as 10

8.2. Slabs 72

kmem_cache_shrink

__kmem_cache_shrink_locked

kmem_slab_destroy

Figure 8.4: Call Graph: kmem_cache_shrink

__kmem_cache_shrink

drain_cpu_caches __kmem_cache_shrink_locked

free_block smp_call_function_all_cpus kmem_slab_destroy

Figure 8.5: Call Graph: __kmem_cache_shrink

• Delete the cache from the cache chain

• Shrink the cache to delete all slabs

• Free any per CPU caches (kfree())

• Delete the cache descriptor from the cache_cache

8.2 Slabs

This section will describe how a slab is structured and managed. The struct which
describes it is much simpler than the cache descriptor, but how the slab is arranged
is considerably more complex. We begin with the descriptor.

8.2. Slabs 73

kmem_cache_destroy

__kmem_cache_shrink kfree kmem_cache_free

Figure 8.6: Call Graph: kmem_cache_destroy

typedef struct slab_s {
struct list_head list;
unsigned long colouroff;
void *s_mem;
unsigned int inuse;
kmem_bufctl_t free;

} slab_t;

list is the list the slab belongs to. One of slab_full, slab_partial and
slab_free from the cache manager

colouroff is the colour offset from the base address of the first object within the
slab. The address of the first object is s_mem + colouroff .

s_mem is the starting address of the first object within the slab

inuse gives the number of active objects in the slab

free This is an array of bufctl’s used for storing locations of free objects. See
Section 8.2.3

The reader will note that given the slab manager or an object within the slab,
there does not appear to be an obvious way to determine what slab or cache they
belong to. This is addressed by using the list field in the struct page that makes
up the cache. SET_PAGE_CACHE() and SET_PAGE_SLAB() use next and prev on the
page list to track what cache and slab an object belongs to. To get the descriptors
from the page, the macros GET_PAGE_CACHE() and GET_PAGE_SLAB() are available.
This set of relationships is illustrated in Figure 8.7

The last issue is where the slab management struct is kept. Slab managers are
kept either on (CFLGS_OFF_SLAB set in the static flags) or off-slab. Where they
are placed are determined by the size of the object during cache creation.

8.2.1. Storing the Slab Descriptor 74

pages

cache

page->list.next

slab

page->list.prev

object object

Figure 8.7: Page to Cache and Slab Relationship

8.2.1 Storing the Slab Descriptor

If the objects are larger than a threshold (512 bytes on x86), theCFGS_OFF_SLAB
is set in the cache flags and the slab descriptor or manager is kept off-slab in one
of the sizes cache (See Section 8.4) that is large enough to contain the struct is se-
lected and kmem_cache_slabmgmt() allocates from it as necessary. This limits the
number of objects that can be stored on the slab because there is limited space for
the bufctl’s but that is unimportant as the objects are large and there should not
be many in the slab.

Alternatively, the slab manger is kept at the beginning of the slab. When stored
on-slab, enough space is kept at the beginning of the slab to store both the slab_t
and the kmem_bufctl_t array. The array is responsible for tracking where the next
free object is stored and is discussed later in the chapter. The objects are stored
after the kmem_bufctl_t array.

Figure 8.8 should help clarify what a slab with the descriptor on-slab looks like
and Figure 8.9 illustrates how a cache uses a sizes cache to store the slab descriptor
when the descriptor is kept off-slab.

8.2.2 Slab Creation

At this point, we have seen how the cache is created, but on creation, it is an
empty cache with empty lists for its slab_full, slab_partial and slabs_free. A
cache is grown with the function kmem_cache_grow() when no objects are left in
the slabs_partial list and there is no slabs in slabs_free. The tasks it fulfills are

• Perform basic sanity checks to guard against bad usage

8.2.3. Tracking Free Objects 75

cache->slabs_free

Slab Descriptor

slab_t kmem_bufctl_t array Object Object Object Object Object Object

Free Object Information

First Object Address (s_mem)

Figure 8.8: Slab With Descriptor On-Slab

• Calculate colour offset for objects in this slab

• Allocate memory for slab and acquire a slab descriptor

• Link the pages used for the slab to the slab and cache descriptors (See Section
8.2)

• Initialise objects in the slab

• Add the slab to the cache

8.2.3 Tracking Free Objects

The slab allocator has to have a quick and simple way of tracking where free objects
are on the partially filled slabs. It achieves this using a kmem_bufctl_t array
that is associated with each slab manager as obviously it is up to the slab manager
to know where its free objects are.

Historically, and according to the paper describing the slab allocator pa-
per [Bon94], kmem_bufctl_t was a linked list of objects. In Linux 2.2.x, this
struct was a union of three items, a pointer to the next free object, a pointer to the
slab manager and a pointer to the object. Which it was depended on the state of
the object.

Today, the slab and cache an object belongs to is determined by the struct page
and the kmem_bufctl_t is simply an integer array of object indices. The number of
elements in the array is the same as the number of objects on the slab.

141 typedef unsigned int kmem_bufctl_t;

8.2.4. Initialising the kmem_bufctl_t Array 76

Size-X Cache

slab_t kmem_bufctl_t

Object Object Object Object Object Object Object Object Object

First Object Address (s_mem)

cache

Figure 8.9: Slab With Descriptor Off-Slab

As the array is kept after the slab descriptor and there is no pointer to the first
element directly, a helper macro slab_bufctl() is provided.

163 #define slab_bufctl(slabp) \
164 ((kmem_bufctl_t *)(((slab_t*)slabp)+1))

This seemingly cryptic macro is quite simple when broken down. The parameter
slabp is to the slab manager. The block ((slab_t*)slabp)+1 casts slabp to a
slab_t struct and adds 1 to it. This will give a slab_t * pointer to the beginning
of the kmem_bufctl_t array. (kmem_bufctl_t *) recasts that pointer back to the
required type. The results in blocks of code that contain slab_bufctl(slabp)[i].
Translated that says, take a pointer to a slab descriptor, offset it with slab_bufctl
to the beginning of the kmem_bufctl_t array and give the ith element of the array.

The index to the next free object in the slab is stored in slab_t→free elimin-
ating the need for a linked list to track free objects. When objects are allocated or
freed, this pointer is updated based on information in the kmem_bufctl_t array.

8.2.4 Initialising the kmem_bufctl_t Array

When a cache is grown, all the objects and the kmem_bufctl_t array on the slab
are initialised. The array is filled with the index of each object beginning with 1
and ending with the marker BUFCTL_END. For a slab with 5 objects, the elements of
the array would look like Figure 8.11

The value 0 is stored in slab_t→free as the 0th object is the first free object to
be used. The idea is that for a given object n, the index of the next free object will

8.2.5. Finding the Next Free Object 77

kmem_cache_grow

kmem_getpages kmem_cache_slabmgmt kmem_cache_init_objs

__get_free_pages kmem_cache_alloc

__kmem_cache_alloc

Figure 8.10: Call Graph: kmem_cache_grow

1 2 3 4 BUFCTL_END

Figure 8.11: initialised kmem_bufctl_t Array

be stored in kmem_bufctl_t[n]. Looking at the array above, the next object free
after 0 is 1. After 1, there is two and so on. As the array is used, this arrangement
will make the array act as a LIFO for free objects.

8.2.5 Finding the Next Free Object

kmem_cache_alloc() is the function which allocates an object by calling kmem_cache_alloc_one_tail()
which does the “real” work and updates the kmem_bufctl_t() array.

slab_t→free has the index of the first free object. The index of the next free
object is at kmem_bufctl_t[slab_t→free]. In code terms, this looks like

1253 objp = slabp->s_mem + slabp->free*cachep->objsize;
1254 slabp->free=slab_bufctl(slabp)[slabp->free];

slabp→s_mem is the index of the first object on the slab. slabp→free is the
index of the object to allocate and it has to be multiplied by the size of an object.

8.2.6. Updating kmem_bufctl_t 78

The index of the next free object to allocate is stored at kmem_bufctl_t[slabp→free].
There is no pointer directly to the array hence the helper macro slab_bufctl() is
used. Note that the kmem_bufctl_t array is not changed during allocations but
that the elements that are unallocated are unreachable. For example, after two
allocations, index 0 and 1 of the kmem_bufctl_t array are not pointed to by any
other element.

8.2.6 Updating kmem_bufctl_t

The kmem_bufctl_t list is only updated when an object is freed in the function
kmem_cache_free_one(). The array is updated with this block of code

1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
1452
1453 slab_bufctl(slabp)[objnr] = slabp->free;
1454 slabp->free = objnr;

objp is the object about to be freed and objnr is its index. kmem_bufctl_t[objnr]
is updated to pointer to the current value of slabp→free effectively placing the
object pointed to by free on the pseudo linked list. slabp→free is updated to the
object been freed so that it will be the next one allocated.

8.2.7 Calculating the Number of Objects on a Slab

During cache creation, the function kmem_cache_estimate() is called to estimate
how many objects may be stored on a single slab taking into account whether the
slab descriptor must be stored on or off-slab and the size of each kmem_bufctl_t
needed to track if an object is free or not. It returns the number of objects that
may be stored and how many bytes are wasted. The number of wasted bytes is
important if cache colouring is to be used.

The calculation is quite basic and takes the following steps

• Initialise wastage to be the total size of the slab, PAGE_SIZE « gfp_order

• Subtract the amount of space required to store the slab descriptor

• Count up the number of objects i may be stored. Include the size of the
kmem_bufctl_t if the slab descriptor is stored on the slab. Keep increasing
the size of i until the slab is filled.

• Return the number of objects and bytes wasted

8.2.8 Slab Destroying

When a cache is been shrunk or destroyed, the slabs will be deleted. As the objects
may have destructors, they must be called so the tasks of this function are

8.3. Objects 79

• If available, call the destructor for every object in the slab

• If debugging is enabled, check the red marking and poison pattern

• Free the pages the slab uses

The call graph at Figure 8.12 is very simple.

kmem_slab_destroy

kmem_freepages kmem_cache_free

Figure 8.12: Call Graph: kmem_slab_destroy

8.3 Objects

This section will cover how objects are managed. At this point, most of the real
hard work has been completed by either the cache or slab managers.

8.3.1 Initialising Objects in a Slab

When a slab is created, all the objects in it put in an initialised state. If a constructor
is available, it is called for each object and it is expected when an object is freed,
it is left in its initialised state. Conceptually this is very simple, cycle through all
objects and call the constructor and initialise the kmem_bufctl for it. The function
kmem_cache_init_objs() is responsible for initialising the objects.

8.3.2 Object Allocation

The function kmem_cache_alloc() is responsible for allocating one object to the
caller which behaves slightly different in the UP and SMP cases. Figure 8.13 shows
the basic call graph that is used to allocate an object in the SMP case.

There is four basic steps. The first step (kmem_cache_alloc_head()) covers
basic checking to make sure the allocation is allowable. The second step is to select
which slabs list to allocate from. This is one of slabs_partial or slabs_free. If
there is no slabs in slabs_free, the cache is grown (See Section 8.2.2) to create a
new slab in slabs_free. The final step is to allocate the object from the selected
slab.

8.3.3. Object Freeing 80

kmem_cache_alloc

__kmem_cache_alloc

kmem_cache_alloc_head kmem_cache_alloc_one kmem_cache_alloc_one_tail kmem_cache_grow

Figure 8.13: Call Graph: kmem_cache_alloc

The SMP case takes one further step. Before allocating one object, it will check
to see if there is one available from the per-CPU cache and use it if there is. If there
is not, it will allocate batchcount number of objects in bulk and place them in its
per-cpu cache. See Section 8.5 for more information on the per-cpu caches.

8.3.3 Object Freeing

Freeing an object is a relatively simple task and is available via the kmem_cache_free()
function. Just like kmem_cache_alloc(), it behaves difference in the UP and SMP
cases. The principle difference between the two cases is that in the UP case, the
object is returned directly to the slab but with the SMP case, the object is returned
to the per CPU cache. In both cases, the destructor for the object will be called
if one is available. The destructor is responsible for returning the object to the
initialised state.

8.4 Sizes Cache

Linux keeps two sets of caches for small memory allocations which the physical page
allocator is unsuitable. One cache is for use with DMA and the other suitable for
normal use. The human readable names for these caches size-X cache and size-
X(DMA) cache viewable from /proc/cpuinfo. Information for each sized cache
is stored in a cache_sizes_t struct defined in mm/slab.c

331 typedef struct cache_sizes {
332 size_t cs_size;
333 kmem_cache_t *cs_cachep;
334 kmem_cache_t *cs_dmacachep;
335 } cache_sizes_t;

332 The size of the memory block

333 The cache of blocks for normal memory use

8.4.1. kmalloc 81

334 The cache of blocks for use with DMA

As there is a limited number of these caches that exist, a static array called
cache_sizes is initialised at compile time beginning with 32 bytes on a 4KiB ma-
chine and 64 for greater page sizes.

337 static cache_sizes_t cache_sizes[] = {
338 #if PAGE_SIZE == 4096
339 { 32, NULL, NULL},
340 #endif
341 { 64, NULL, NULL},
342 { 128, NULL, NULL},
343 { 256, NULL, NULL},
344 { 512, NULL, NULL},
345 { 1024, NULL, NULL},
346 { 2048, NULL, NULL},
347 { 4096, NULL, NULL},
348 { 8192, NULL, NULL},
349 { 16384, NULL, NULL},
350 { 32768, NULL, NULL},
351 { 65536, NULL, NULL},
352 {131072, NULL, NULL},
353 { 0, NULL, NULL}

As is obvious, this is a static array that is zero terminated consisting of buffers
of succeeding powers of 2 from 25 to 217 . An array now exists that describes each
sized cache which must be initialised with caches at system startup.

8.4.1 kmalloc

With the existence of the sizes cache, the slab allocator is able to offer a new allocator
function, kmalloc() for use when small memory buffers are required. When a
request is received, the appropriate sizes cache is selected and an object assigned
from it. The call graph on Figure 8.14 is therefore very simple as all the hard work
is in cache allocation.

8.4.2 kfree

Just as there is a kmalloc() function to allocate small memory objects for use, there
is a kfree() for freeing it. As with kmalloc(), the real work takes place during
object freeing (See Section 8.3.3) so the call graph in Figure 8.15 is very simple.

8.5. Per-CPU Object Cache 82

kmalloc

__kmem_cache_alloc

Figure 8.14: Call Graph: kmalloc

kfree

__kmem_cache_free

Figure 8.15: Call Graph: kfree

8.5 Per-CPU Object Cache

One of the tasks the slab allocator is dedicated to is improved hardware cache
utilization. An aim of high performance computing[CS98] in general is to use data
on the same CPU for as long as possible. Linux achieves this by trying to keep
objects in the same CPU cache with a Per-CPU object cache, called a cpucache
for each CPU in the system.

When allocating or freeing objects, they are placed in the cpucache. When there
is no objects free, a batch of objects is placed into the pool. When the pool gets
too large, half of them are removed and placed in the global cache. This way the
hardware cache will be used for as long as possible on the same CPU.

The second major benefit to this method is that spinlocks do not have to be held
when accessing the CPU pool as we are guaranteed another CPU won’t access the
local data. This is important because without the caches, the spinlock would have
to be taken for every allocation and free which is unnecessarily expensive.

8.5.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in the cache
descriptor as

231 cpucache_t *cpudata[NR_CPUS];

8.5.2. Adding/Removing Objects from the Per-CPU Cache 83

This structure is very simple

173 typedef struct cpucache_s {
174 unsigned int avail;
175 unsigned int limit;
176 } cpucache_t;

avail is the number of free objects available on this cpucache

limit is the total number of free objects that can exist

A helper macro cc_data() is provided to give the cpucache for a given cache
and processor. It is defined as

180 #define cc_data(cachep) \
181 ((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from the
cpucache array (cpudata). The index needed is the ID of the current processor,
smp_processor_id().

Pointers to objects on the cpucache are placed immediately after the cpucache_t
struct. This is very similar to how objects are stored after a slab descriptor.

8.5.2 Adding/Removing Objects from the Per-CPU Cache

To prevent fragmentation, objects are always added or removed from the end of the
array. To add an object (obj) to the CPU cache (cc), the following block of code is
used

cc_entry(cc)[cc->avail++] = obj;

To remove an object

obj = cc_entry(cc)[--cc->avail];

cc_entry() is a helper major which gives a pointer to the first object in the
cpucache. It is defined as

178 #define cc_entry(cpucache) \
179 ((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache, increments the value by the size of the
cpucache_t descriptor giving the first object in the cache.

8.5.3. Enabling Per-CPU Caches 84

8.5.3 Enabling Per-CPU Caches

When a cache is created, its CPU cache has to be enabled and memory allocated for
it using kmalloc(). The function enable_cpucache() is responsible for deciding
what size to make the cache and calling kmem_tune_cpucache() to allocate memory
for it.

Obviously a CPU cache cannot exist until after the various sizes caches have
been enabled so a global variable g_cpucache_up is used to prevent cpucache’s
been enabled before it is possible. The function enable_all_cpucaches() cycles
through all caches in the cache chain and enables their cpucache.

Once the CPU cache has been setup, it can be accessed without locking as a
CPU will never access the wrong cpucache so it is guaranteed safe access to it.

8.5.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU has to be told
about it. It’s not sufficient to change all the values in the cache descriptor as that
would lead to cache coherency issues and spinlocks would have to used to protect
the cpucache’s. Instead a ccupdate_t struct is populated with all the information
each CPU needs and each CPU swaps the new data with the old information in the
cache descriptor. The struct for storing the new cpucache information is defined as
follows

868 typedef struct ccupdate_struct_s
869 {
870 kmem_cache_t *cachep;
871 cpucache_t *new[NR_CPUS];
872 } ccupdate_struct_t;

The cachep is the cache been updated and the array new is of the cpucache
descriptors for each CPU on the system. The function smp_function_all_cpus()
is used to get each CPU to call the do_ccupdate_local() function which swaps the
information from ccupdate_struct_t with the information in the cache descriptor.

Once the information has been swapped, the old data can be deleted.

8.5.5 Draining a Per-CPU Cache

When a cache is been shrunk, its first step is to drain the cpucaches of any objects
they might have. This is so the slab allocator will have a clearer view of what slabs
can be freed or not. This is important because if just one object in a slab is placed
in a Per-CPU cache, that whole slab cannot be freed. If the system is tight on
memory, saving a few milliseconds on allocations is the least of its trouble.

8.6. Slab Allocator Initialisation 85

8.6 Slab Allocator Initialisation

Here we will describe the slab allocator initialises itself. When the slab alloc-
ator creates a new cache, it allocates the kmem_cache_t from the cache_cache
or kmem_cache cache. This is an obvious chicken and egg problem so the
cache_cache has to be statically initialised as

357 static kmem_cache_t cache_cache = {
358 slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),
359 slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),
360 slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),
361 objsize: sizeof(kmem_cache_t),
362 flags: SLAB_NO_REAP,
363 spinlock: SPIN_LOCK_UNLOCKED,
364 colour_off: L1_CACHE_BYTES,
365 name: "kmem_cache",
366 };

358-360 initialise the three lists as empty lists

361 The size of each object is the size of a cache descriptor

362 The creation and deleting of caches is extremely rare so do not consider it for
reaping ever

363 initialise the spinlock unlocked

364 Align the objects to the L1 cache

365 The human readable name

That statically defines all the fields that can be calculated at compile time. To
initialise the rest of the struct, kmem_cache_init() is called from start_kernel().

8.7 Interfacing with the Buddy Allocator

The slab allocator doesn’t come with pages attached, it must ask the physical page
allocator for its pages. For this two interfaces are provided, kmem_getpages() and
kmem_freepages(). They are basically wrappers around the buddy allocators API
so that slab flags will be taken into account for allocations.

8.7. Interfacing with the Buddy Allocator 86

kmem_cache_create(const char *name, size_t size, size_t offset, un-
signed long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
void (*dtor)(void*, kmem_cache_t *, unsigned long))

Creates a new cache and adds it to the cache chain

kmem_cache_reap(int gfp_mask)
Scans at mostREAP_SCANLEN caches and selects one for reaping

all per-cpu objects and free slabs from. Called when memory is tight

kmem_cache_shrink(kmem_cache_t *cachep)
This function will delete all per-cpu objects associated with a cache

and delete all slabs in the slabs_free list. It returns the number of
pages freed.

kmem_cache_alloc(kmem_cache_t *cachep, int flags)
Allocate a single object from the cache and return it to the caller

kmem_cache_free(kmem_cache_t *cachep, void *objp)
Free an object and return it to the cache

kmalloc(size_t size, int flags)
Allocate a block of memory from one of the sizes cache

kfree(const void *objp)
Free a block of memory allocated with kmalloc

kmem_cache_destroy(kmem_cache_t * cachep)
Destroys all objects in all slabs and frees up all associated memory

before removing the cache from the chain

Table 8.1: Slab Allocator API for caches

Flag Description
CFGS_OFF_SLAB Indicates that the slab managers for this cache

are kept off-slab. This is discussed further in
Section 8.2.1

CFLGS_OPTIMIZE This flag is only ever set and never used

Table 8.2: Internal cache static flags

8.7. Interfacing with the Buddy Allocator 87

Flag Description
SLAB_HWCACHE_ALIGN Align the objects to the L1 CPU

cache
SLAB_NO_REAP Never reap slabs in this cache
SLAB_CACHE_DMA Use memory from ZONE_DMA

Table 8.3: Cache static flags set by caller

Flag Description
SLAB_DEBUG_FREE Perform expensive checks on free
SLAB_DEBUG_INITIAL After an object is freed, the constructor

is called with a flag set that tells it to
check to make sure it is initialised cor-
rectly

SLAB_RED_ZONE This places a marker at either end of
objects to trap overflows

SLAB_POISON Poison objects with known a pattern
for trapping changes made to objects
not allocated or initialised

Table 8.4: Cache static debug flags

Flag Description
SLAB_NOFS Equivalent to GFP_NOFS
SLAB_NOIO Equivalent to GFP_NOIO
SLAB_NOHIGHIO Equivalent to GFP_NOHIGHIO
SLAB_ATOMIC Equivalent to GFP_ATOMIC
SLAB_USER Equivalent to GFP_USER
SLAB_KERNEL Equivalent to GFP_KERNEL
SLAB_NFS Equivalent to GFP_NFS
SLAB_DMA Equivalent to GFP_DMA

Table 8.5: Cache Allocation Flags

Chapter 9

Process Address Space

The allocation methods discussed till now have dealt exclusively with kernel requests.
They are considered high priority, rarely deferred1 and never swapped out. It is
presumed that the kernel is error free and has a good reason for needing the memory.
More importantly, the kernel addressing space does not change so no matter what
process is running, the virtual address space reserved for the kernel remains the
same.

It is very different for processes. Each process has its own linear address space
which potentially can change with every context switch. The only exception is when
lazy TLB switch is in used which processes such as init and kernel threads use.

Allocations on behalf of a user process are considered low priority and are not
satisfied immediately. Instead space is reserved in the linear address space and a
physical page is only allocated upon access which is signaled by a page fault.

The process address is not trusted or presumed to be constant. The kernel
is prepared to catch all exception and addressing errors raised from userspace.
When the kernel is copying to or from userspace, the functions copy_to_user()
and copy_from_user() are used to read memory rather than accessing the ad-
dresses directly. Linux relies on the MMU to raise exceptions when the address
is invalid and have the Page Fault Exception handler catch and fix it up. In the
x86 case, assembler is provided by the __copy_user() to trap exceptions where the
address is totally useless. The location of the fixup code is found when the function
search_exception_table() is called.

9.1 Managing the Address Space

From a user perspective, the address space is a flat linear set of addresses which
may be used but the kernel’s perspective is slightly different. The linear address
space is split into two parts, the userspace part which changes with each context
switch and the kernel address space which remains constant. The location of the
split is determined by the value of PAGE_OFFSET which is 3GiB on the x86.

1vmalloc being the exception which is only allocated on page fault

88

9.1. Managing the Address Space 89

This means that 3GiB is available for the process to use the the remaining 1GiB is
always mapped by the kernel.

The address space usable by the process is managed by a high level mm_struct
which is roughly analogous to the vmspace struct in BSD[McK96].

Each address space consists of a number of page aligned regions of memory
that are in use. They never overlap and represent a set of addresses which contain
pages that are related to each other in terms of protection and purpose. These
regions are represented by a struct vm_area_struct and is roughly analogous to the
vm_map_entry struct in BSD. For clarity, a region may represent the process heap
for use with malloc, a memory mapped file such as a shared library or a block of
anonymous memory allocated with mmap(). The pages in the region may have been
never allocation, are present and in use or swapped out to disk.

If a region is backed by a file, its vm_file field will be set. By traversing
vm_file→f_dentry→d_inode→i_mapping, the associated address_space for the
region may be obtained. The address_space has all the filesystem specific inform-
ation required to perform page based operations on disk.

struct mm_struct struct mm_struct
mmlist

struct vm_area_struct

mmap

struct vm_area_struct
vm_next

struct file

vm_file

struct page

vm_mm

struct inode

f_dentry->d_inode

struct address_space

i_mapping

mapping

Physical Page Frame

Figure 9.1: Data Structures related to the Address Space

A number of system calls are provided which affect the address space and regions

9.2. Process Address Space Descriptor 90

which are listed in Table 9.1

System Call Description
fork() Creates a new process with a new address space. All the

pages are marked COW and are shared between the two
processes until a page fault occurs to make private copies

clone() clone() allows a new process to be created that shares
parts of its context with its parent and is how thread-
ing is implemented in Linux. clone() without the
CLONE_VM set will create a new address space which
is essentially the same as fork()

mmap() mmap creates a new region within the process linear ad-
dress space

mremap() Remaps or resizes a region of memory. If the virtual
address space is not available for the mapping, the region
may be moved unless the move is forbidden by the caller.

munmap() This destroys part or all of a region. If the region been
unmapped is in the middle of an existing region, the
existing region is split into two separate regions

shmat() This attaches a shared memory segment to a process ad-
dress space

shmdt() Removes a shared memory segment from an address
space

execve() This loads a new executable file replacing the current
address space

exit() Destroys an address space and all regions

Table 9.1: System Calls Related to Memory Regions

9.2 Process Address Space Descriptor

The process address space is described by the mm_struct. Only one exists for each
process and is shared between threads. Threads are identified in the task list by
having two task list entires with the same mm_struct pointer.

Kernel threads have no user space context and so the task_struct→mm field is
NULL. For some tasks such as the boot idle task, it is never setup but for kernel
threads, a call to daemonize()() calls exit_mm() to delete it. These tasks use what
is called Lazy TLB during context switches during schedule(). Instead of carrying
out an expensive TLB flush by calling switch_mm(), these processes borrow the mm
of the previous task and place it in task_struct→active_mm.

A unique mm_struct() is not needed for kernel threads as they will never be
page faulting or accessing the userspace portion. The only exception is faulting in
vmalloc space which is treated as a special case of the page fault handling code. As

9.2. Process Address Space Descriptor 91

flushes are extremely expensive, especially with architectures such as the PPC, the
use of Lazy TLB can show large improvements for context switches.

When entering Lazy TLB, the function enter_lazy_tlb() is called to ensure
that a mm is not shared between processors in SMP machines although on UP
machines, the function is a a NULL operation. The second time when lazy TLB is
used is during process exit when start_lazy_tlb() is used briefly while the process
is waiting to be reaped by the parent.

The struct has two reference counts called mm_users and mm_count for two types
of “users”. The mm_users is a reference count of processes accessing the userspace
portion of for this mm such as the page tables and file mappings. Threads and the
swap_out code for instance will increment this count make sure a mm_struct() is
not destroyed early. When it drops to 0, exit_mmap() will delete all mappings and
tear down the page tables before decrementing the mm_count.

mm_count is reference count of the “anonymous users” for the mm initialised
at 1 for the “real” user. An anonymous user is one that does not necessarily care
about the userspace portion and is just borrowing the mm_struct. Example users
of these are kernel threads which use lazy TLB switching and have no mm_struct
of their own. When this count drops to 0, the mm_struct may be destroyed. Both
reference counts exist because anonymous users need the mm_struct to exist even if
the userspace mappings get destroyed and there is no point delaying their removal.

The mm_struct is defined in include/linux/sched.h as follows;

9.2. Process Address Space Descriptor 92

210 struct mm_struct {
211 struct vm_area_struct * mmap;
212 rb_root_t mm_rb;
213 struct vm_area_struct * mmap_cache;
214 pgd_t * pgd;
215 atomic_t mm_users;
216 atomic_t mm_count;
217 int map_count;
218 struct rw_semaphore mmap_sem;
219 spinlock_t page_table_lock;
220
221 struct list_head mmlist;
222
226 unsigned long start_code, end_code, start_data, end_data;
227 unsigned long start_brk, brk, start_stack;
228 unsigned long arg_start, arg_end, env_start, env_end;
229 unsigned long rss, total_vm, locked_vm;
230 unsigned long def_flags;
231 unsigned long cpu_vm_mask;
232 unsigned long swap_address;
233
234 unsigned dumpable:1;
235
236 /* Architecture-specific MM context */
237 mm_context_t context;
238 };

mmap The head of a linked list of all VMA regions in the address space

mm_rb The VMAs are arranged in a linked list and in a red-black tree for fast
lookups. This is the root of the tree

mmap_cache The vma found during the last call to find_vma() is stored in this
field on the assumption that the area will be used again soon

pgd The Page Global Directory for this process

mm_users A reference count of users accessing the userspace portion of the ad-
dress space as explained at the beginning of the section

mm_count A reference count of the anonymous users for the mm starting at 1
for the “real” user as explained at the beginning of this section

map_count Number of VMAs in use

9.2.1. Allocating a Descriptor 93

mmap_sem This is a long lived lock which protects the vma list for readers and
writers. As the taker could run for so long, a spinlock is inappropriate. A
reader of the list takes this semaphore with down_read(). If they need to
write, it must be taken with down_write() and the page_table_lock must be
taken as well

page_table_lock This protects most fields on the mm_struct. As well as the
page tables, It protects the rss count and the vma from modification

mmlist All mm’s are linked together via this field

start_code, end_code The start and end address of the code section

start_data, end_data The start and end address of the data section

start_brk, end_brk The start and end address of the heap

arg_start, arg_end The start and end address of command line arguments

env_start, env_end The start and end address of environment variables

rss Resident Set Size (RSS), the number of resident pages for this process

total_vm The total memory space occupied by all vma regions in the process

locked_vm The amount of memory locked with mlock() by the process

def_flags It has only one possible value, VM_LOCKED. It is used to determine
if all future mappings are locked by default or not

cpu_vm_mask A bitmask representing all possible CPU’s in an SMP system.
The mask is used with IPI to determine if a processor should execute a par-
ticular function or not. This is important during TLB flush for each CPU for
example

swap_address Used by the vmscan code to record the last address that was
swapped from when swapping out entire processes

dumpable Set by prctl(), this flag is important only to ptrace

context Architecture specific MMU context

There is a small number of functions for dealing with mm_structs which is
described in Table 9.2

9.2.1 Allocating a Descriptor

Two functions are provided to allocate a mm_struct(). To be slightly confusing,
they are essentially the name but with important differences. allocate_mm will
allocate a mm_struct from the slab allocator. alloc_mm will allocate from slab
and then call the function mm_init() to initialise it.

9.2.2. Initialising a Descriptor 94

Function Description
mm_init() Initialises a mm_struct by setting starting values for

each field, allocating a PGD, initialising spinlocks etc.
allocate_mm() Allocates a mm_struct from the slab allocator
mm_alloc() Allocates a mm_struct using allocate_mm() and calls

mm_init() to initialise it
exit_mmap() Walks through an mm and unmaps all VMAs associ-

ated with it
copy_mm() Makes an exact copy of the current tasks mm to a new

task. This is only used during fork
free_mm Returns the mm_struct to the slab allocator

Table 9.2: Functions related to memory region descriptors

9.2.2 Initialising a Descriptor

The initial mm_struct in the system is called init_mm() and is statically initialised
at compile time using the macro INIT_MM().

242 #define INIT_MM(name) \
243 { \
244 mm_rb: RB_ROOT, \
245 pgd: swapper_pg_dir, \
246 mm_users: ATOMIC_INIT(2), \
247 mm_count: ATOMIC_INIT(1), \
248 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \
249 page_table_lock: SPIN_LOCK_UNLOCKED, \
250 mmlist: LIST_HEAD_INIT(name.mmlist), \
251 }

Once it is established, new mm_structs are copies of their parent mm_struct
copied using copy_mm() with the process specific fields initialised with init_mm().

9.2.3 Destroying a Descriptor

A new user to an mm increments the usage could with a simple call,

atomic_int(&mm->mm_users};

As long as the count is above 0, the caller is guaranteed that the mm_struct will
not disappear prematurely. It is decremented with a call to mmput(). If the count
reaches zero, all the mapped regions with exit_mmap() and the mm destroyed with
mm_drop().

9.3. Memory Regions 95

9.3 Memory Regions

The full address space of a process is rarely used, only sparse regions are. Each
region is represented by a vm_area_struct which never overlap and represent a set
of addresses with the same protection and purpose. Examples of a region include
a read-only shared library loaded into the address space or the process heap. A
full list of mapped regions a process has may be vied via the proc interface at
/proc/pid_number/maps.

The region is represented by a number of different structures illustrated in Figure
9.1. At the top, there is the vm_area_struct which on its own is enough to represent
anonymous memory.

If a file is memory mapped, the struct file is available through the vm_file field
which has a pointer to the struct inode. The inode is used to get the struct
address space which has all the private information about the file including a set
of pointers to filesystem functions which perform the filesystem specific operations
such as reading and writing pages to disk.

44 struct vm_area_struct {
45 struct mm_struct * vm_mm;
46 unsigned long vm_start;
47 unsigned long vm_end;
49
50 /* linked list of VM areas per task, sorted by address */
51 struct vm_area_struct *vm_next;
52
53 pgprot_t vm_page_prot;
54 unsigned long vm_flags;
55
56 rb_node_t vm_rb;
57
63 struct vm_area_struct *vm_next_share;
64 struct vm_area_struct **vm_pprev_share;
65
66 /* Function pointers to deal with this struct. */
67 struct vm_operations_struct * vm_ops;
68
69 /* Information about our backing store: */
70 unsigned long vm_pgoff;
72 struct file * vm_file;
73 unsigned long vm_raend;
74 void * vm_private_data;
75 };

vm_mm The mm_struct this VMA belongs to

9.3. Memory Regions 96

Function Description
find_vma() Finds the VMA that covers a given ad-

dress. If the region does not exist, it re-
turns the VMA closest to the requested ad-
dress

find_vma_prev() Same as find_vma except it also also gives
the VMA pointing to the returned VMA.
It is not used, with sys_mprotect() be-
ing the notable exception, as it is usually
find_vma_prepare() that is required

find_vma_prepare() Same as find_vma except that it will re-
turn the VMA pointing to the returned
VMA as well as the red-black tree nodes
needed to perform an insertion into the
tree

find_vma_intersection() Returns the VMA which intersects a given
address range. Useful when checking if a
linear address region is in use by any VMA

vma_merge() Attempts to expand the supplied VMA to
cover a new address range. If the VMA
can not be expanded forwards, the next
VMA is checked to see may it be expan-
ded backwards to cover the address range
instead. Regions may be merged if there
is no file/device mapping and the permis-
sions match

get_unmapped_area() Returns the address of a free region of
memory large enough to cover the reques-
ted size of memory. Used principally when
a new VMA is to be created

insert_vm_struct() Inserts a new VMA into a linear address
space

Table 9.3: Memory Region VMA API

9.3.1. File/Device backed memory regions 97

vm_start The starting address

vm_end The end address

vm_next All the VMAs in an address space are linked together in an address
ordered singly linked list with this field

vm_page_prot The protection flags for all pages in this VMA which are all
defined in include/linux/mm.h . See Table 9.2 for a full description

vm_rb As well as been in a linked list, all the VMAs are stored on a red-black tree
for fast lookups. This is important for page fault handling when finding the
correct region quickly is important, especially for a large number of mapped
regions

vm_next_share Shared VMA regions based on file mappings (such as shared
libraries) linked together with this field

vm_pprev_share The complement to vm_next_share

vm_ops The vm_ops field contains functions pointers for open,close and nopage.
These are needed for syncing with information from the disk

vm_pgoff This is the page aligned offset within a file that is mmap’ed

vm_file The struct file pointer to the file been mapped

vm_raend This is the end address of a readahead window. When a fault occurs,
a readahead window will page in a number of pages after the fault address.
This field records how far to read ahead

vm_private_data Used by some device drivers to store private information. Not
of concern to the memory manager

All the regions are linked together on a linked list ordered by address via the
vm_next field. When searching for a free area, it is a simple matter of traversing the
list but a frequent operation is to search for the VMA for a particular address such
as during page faulting for example. In this case, the Red-Black tree is traversed as
it has O(logN) search time on average. The tree is ordered so that lower addresses
than the current node are on the left leaf and higher addresses are on the right.

9.3.1 File/Device backed memory regions

In the event the region is backed by a file, the vm_file leads to an associated
address_space as shown earlier in Figure 9.1. The struct contains information of
relevance to the filesystem such as the number of dirty pages which must be flushed
to disk. It is defined as follows in include/linux/fs.h

9.3.1. File/Device backed memory regions 98

Flags Description
Protection Flags
VM_READ Pages may be read
VM_WRITE Pages may be written
VM_EXEC Pages may be executed
VM_SHARED Pages may be shared
VM_DONTCOPY VMA will not be copied on fork
VM_DONTEXPAND Prevents a region being resized. Appears unused
mmap Related Flags
VM_MAYREAD Allow the VM_READ flag to be set
VM_MAYWRITE Allow the VM_WRITE flag to be set
VM_MAYEXEC ALLOW the VM_EXEC flag to be set
VM_MAYSHARE Allow the VM_SHARE flag to be set
VM_GROWSDOWN Shared segment (probably stack) is allowed to

grow down
VM_GROWSUP Shared segment (probably heap) is allowed to

grow up
VM_SHM Pages are used by shared SHM memory seg-

ment
VM_DENYWRITE What MAP_DENYWRITE during mmap

translates to. Now unused
VM_EXECUTABLE What MAP_EXECUTABLE during mmap

translates to. Now unused
Locking Flags
VM_LOCKED If set, the pages will not be swapped out. Set by

mlock()
VM_IO Signals that the area is a mmaped region for IO to

a device. It will also prevent the region being core
dumped

VM_RESERVED Do not swap out this region, used by device drivers
madvise() Flags
VM_SEQ_READ A hint stating that pages will be accessed sequen-

tially
VM_RAND_READ A hint stating that readahead in the region is use-

less

Figure 9.2: Memory Region Flags

9.3.1. File/Device backed memory regions 99

401 struct address_space {
402 struct list_head clean_pages;
403 struct list_head dirty_pages;
404 struct list_head locked_pages;
405 unsigned long nrpages;
406 struct address_space_operations *a_ops;
407 struct inode *host;
408 struct vm_area_struct *i_mmap;
409 struct vm_area_struct *i_mmap_shared;
410 spinlock_t i_shared_lock;
411 int gfp_mask;
412 };

clean_pages A list of clean pages which do not have to be synchronized with the
disk

dirty_pages Pages that the process has touched and need to by sync-ed

locked_pages The number of pages locked in memory

nrpages Number of resident pages in use by the address space

a_ops A struct of function pointers within the filesystem

host The host inode the file belongs to

i_mmap A pointer to the vma the address space is part of

i_mmap_shared A pointer to the next VMA which shares this address space

i_shared_lock A spinlock to protect this structure

gfp_mask The mask to use when calling __alloc_pages for new pages

Periodically the memory manger will need to flush information to disk. The
memory manager doesn’t know and doesn’t care how information is written to disk,
so the a_ops struct is used to call the relevant functions. It is defined as follows in
include/linux/fs.h

9.3.1. File/Device backed memory regions 100

383 struct address_space_operations {
384 int (*writepage)(struct page *);
385 int (*readpage)(struct file *, struct page *);
386 int (*sync_page)(struct page *);
387 /*
388 * ext3 requires that a successful prepare_write()

* call be followed
389 * by a commit_write() call - they must be balanced
390 */
391 int (*prepare_write)(struct file *, struct page *,

unsigned, unsigned);
392 int (*commit_write)(struct file *, struct page *,

unsigned, unsigned);
393 /* Unfortunately this kludge is needed for FIBMAP.

* Don’t use it */
394 int (*bmap)(struct address_space *, long);
395 int (*flushpage) (struct page *, unsigned long);
396 int (*releasepage) (struct page *, int);
397 #define KERNEL_HAS_O_DIRECT
398 int (*direct_IO)(int, struct inode *, struct kiobuf *,

unsigned long, int);
399 };

writepage Write a page to disk. The offset within the file to write to is stored
within the page struct. It is up to the filesystem specific code to find the block.
See buffer.c:block_write_full_page()

readpage Read a page from disk. See buffer.c:block_read_full_page()

sync_page Sync a dirty page with disk. See buffer.c:block_sync_page()

prepare_write This is called before data is copied from userspace into a page that
will be written to disk. With a journaled filesystem, this ensures the filesystem
log is up to date. With normal filesystems, it makes sure the needed buffer
pages are allocated. See buffer.c:block_prepare_write()

commit_write After the data has been copied from userspace, this function is
called to commit the information to disk. See buffer.c:block_commit_write()

bmapMaps a block so raw IO can be performed. Only of concern to the filesystem
specific code.

flushpage This makes sure there is no IO pending on a page before releasing it.
See buffer.c:discard_bh_page()

9.3.2. Creating A Memory Region 101

releasepage This tries to flush all the buffers associated with a page before freeing
the page itself. See try_to_free_buffers()

9.3.2 Creating A Memory Region

The system call mmap is provided for creating new memory regions within a process.
For the x86, the function is called sys_mmap2() and is responsible for performing
basic checks before calling do_mmap_pgoff() which is the prime function for creating
new areas for all architectures.

The two high functions above do_mmap_pgoff() are essentially sanity check-
ers. They ensure the mapping size of page aligned if necessary, clears invalid flags,
looks up the struct file for the given file descriptor and acquires the mmap_sem
semaphore.

This do_mmap_pgoff() function is very large and broadly speaking it takes the
following steps;

• Call the filesystem or device specific mmap function

• Sanity check the parameters

• Find a free linear address space large enough for the memory mapping

• Calculate the VM flags and check them against the file access permissions

• If an old area exists where the mapping is to take place, fix it up so it’s suitable
for the new mapping

• Allocate a vm_area_struct from the slab allocator and fill in its entries

• Link in the new VMA

• Update statistics and exit

9.3.3 Finding a Mapped Memory Region

A common operation is to find the VMA a particular address belongs to during
operations such as a page fault and the function responsible is find_vma().

It first checks the mmap_cache field which caches the result of the last call to
find_vma() as it is quite likely the same region is needed a few times in succession.
If it not the desired region, the red-back tree stored in the mm_rb field is traversed.
It returns the VMA closest to the requested address so it is important callers ensure
the returned VMA contains the desired address.

A second function is provided which is functionally similar called find_vma_prev().
The only difference is that it also returns the pointer to the VMA preceding the
searched for VMA2 which is required as the list is a singly listed list. This is used
rarely but most notably, it is used when deciding if two VMAs can be merged so that

2This is one of the very rare cases where a singly linked list is used in the kernel

9.3.3. Finding a Mapped Memory Region 102

sy
s_

m
m

ap
2

do
_m

m
ap

2

do
_m

m
ap

_p
go

ff

Figure 9.3: Call Graph: sys_mmap2

9.3.4. Finding a Free Memory Region 103

the two VMAs may be easily compared. It is also used while removing a memory
region so that the linked lists may be fixed up.

The last function of note for searching VMAs is find_vma_intersection()
which is used to find a VMA which overlaps a given address range. The most
notable use of this is during a call to do_brk() when a region is growing up. It is
important to ensure that the growing region will not overlap an old region.

9.3.4 Finding a Free Memory Region

When a new area is to be mmap’d, a free region has to be found that is large
enough to contain the new mapping. The function responsible for finding a free
area is get_unmapped_area().

get_unmapped_area

arch_get_unmapped_area

find_vma

Figure 9.4: Call Graph: get_unmapped_area

As the call graph in Figure 9.4 shows, there is not much work involved with
finding an unmapped area. The function is passed a number of parameters. A
struct file is passed representing the file or device to be mapped as well as pgoff,
the offset within the file that is been mapped. The requested address for the mapping
is passed as well as its length. The last parameter is the protection flags for the
area.

If a device is been mapped, such as a video card, the associated
f_op→get_unmapped_area is used. This is because devices or files may have addi-
tional requirements for mapping that generic code can not be aware of such as the
address having to be aligned to a particular virtual address.

If there is no special requirements, the architecture specific function
arch_get_unmapped_area() is called. Not all architectures provide their own func-
tion. For those that don’t, there is a generic function provided in mm/mmap.c .

9.3.5. Inserting a memory region 104

9.3.5 Inserting a memory region

The principle function available for inserting a new memory region is insert_vm_struct()
whose call graph can be seen in Figure 9.5. It is a very simply function which first
called find_vma_prepare() to find the appropriate VMAs the new region is to
be inserted between and the correct nodes within the red-black tree. It then calls
__vma_link() to do the work of linking in the new VMA.

insert_vm_struct

find_vma_prepare vma_link

lock_vma_mappings __vma_link unlock_vma_mappings

__vma_link_list __vma_link_rb __vma_link_file

rb_insert_color

__rb_rotate_right __rb_rotate_left

Figure 9.5: Call Graph: insert_vm_struct

The function insert_vm_struct() is rarely used as it does not increase the
map_count field. Instead, the function more commonly used is __insert_vm_struct()
which performs the same tasks except it increases map_count.

Two varieties of linking functions are provided, vma_link() and __vma_link().
vma_link() is intended for use when no locks are held. It’ll acquire all the ne-
cessary locks, including locking the file if the vma is a file mapping before calling
__vma_link which places the VMA in the relevant lists.

It is important to note that many users do not the insert_vm_struct() func-
tions but instead prefer to call find_vma_prepare() themselves followed by a later
vma_link() to avoid having to traverse the tree multiple times.

The linking in __vma_link() consists of three stages, each of which has a single
function. __vma_link_list() inserts the vma into the linear singly linked list. If it
is the first mapping in the address space (i.e. prev is NULL), then it will be made
the red-black root as well. The second stage is linking the node into the red-black
tree with __vma_link_rb(). The final stage is fixing up the file share mapping with
__vma_link_file() which basically inserts the vma into the linked list of VMAs
via the vm_pprev_share() and vm_next_share() fields.

9.3.6. Merging contiguous regions 105

9.3.6 Merging contiguous regions

Linux used to have a function called merge_segments()[Haca] which was respons-
ible for merging adjacent regions of memory together if the file and permissions
matched. The objective was to remove the number of VMAs required especially
as many operations resulted in a number of mappings been created such as calls
to sys_mprotect(). This was an expensive operation as it could result in large
portions of the mappings been traversed and was later removed as applications,
especially those with many mappings, spent a long time in merge_segments().

Only one function exists now that is roughly equivalent vma_merge() and its use
is quite rare. It is only called during sys_mmap() if it is an anonymous region been
mapped and during do_brk(). The principle difference is that instead of merging
two regions together, it will check to see can another region be expanded to cover the
new allocation removing the need to create a new region. A region can be expanded
if there is no file or device mappings and the permissions of the two areas are the
same.

Regions are merged elsewhere albeit no function is explicitly called to perform
the merging. The first is during a call to sys_mprotect(). During the fixup of areas,
the two regions will be merged if the permissions are now the same. The second is
during a call to move_vma() when it is likely similar regions will be located beside
each other.

9.3.7 Remapping and moving a memory region

sys_mremap

do_mremap

do_munmap find_vma vm_enough_memory make_pages_present get_unmapped_area move_vma

nr_free_pages

Figure 9.6: Call Graph: sys_mremap

Memory regions may be moved during a call to sys_mremap() if the region is
growing, would overlap another region and MREMAP_FIXED is not specified in
the flags. The call graph is illustrated in Figure 9.6.

To move a region, it first calls get_unmapped_area() to find a region large
enough to contain the new resized mapping and then calls move_vma() to move the
old VMA to the new location. See Figure 9.7 for the call graph.

9.3.8. Locking a Memory Region 106

move_vma

find_vma_prev move_page_tables insert_vm_struct do_munmap make_pages_present

Figure 9.7: Call Graph: move_vma

First the function checks if the new location may be merged with the VMAs
adjacent to the new location. If they can not be merged, a new VMA is allocated
literally one PTE at a time.

Next move_page_tables() is called, see Figure 9.8 for its call graph. This
function copies all the page table entries from the old mapping to the new one.
While there may be better ways to move the page tables, this method makes error
recovery much easier as it is easy to backtrack if an error occurs during the page
table move.

move_page_tables

move_one_page zap_page_range

get_one_pte alloc_one_pte copy_one_pte

pte_alloc

zap_pmd_range

zap_pte_range

Figure 9.8: Call Graph: move_page_tables

The contents of the pages are not copied. Instead, zap_page_range() is called
to swap out or remove all the pages from the old mapping. The normal page fault
handling code will either swap the pages back in from swap, files or call the device
specific do_nopage() function.

9.3.8 Locking a Memory Region

Linux can lock pages from an address range into memory via the system call mlock()
which is implemented by sys_mlock() whose call graph is shown in Figure 9.9. At
a high level, the function is pretty simple, it creates a VMA for the address range to
be locked, sets the VM_LOCKED flag on it and forces all the pages to be present
with the same functions page fault routines work. A second system call mlockall()

9.3.9. Unlocking the region 107

sys_mlock

do_mlock

find_vma mlock_fixup

mlock_fixup_all mlock_fixup_start mlock_fixup_end mlock_fixup_middle make_pages_present

lock_vma_mappings __insert_vm_struct unlock_vma_mappings

Figure 9.9: Call Graph: sys_mlock

which maps to sys_mlockall() is also provided which is a simple extension to do
the same work as sys_mlock() except for every VMA on the calling process. Both
functions rely on do_mmap() to do the real work of finding the affected VMAs and
deciding what function is needed to fix up the regions as described later.

There is some limitations. The address range must be page aligned as VMAs
are page aligned. This is addressed by simply rounding the range up to the nearest
page aligned range. The second limit is that the process limit RLIMIT_MLOCK
imposed by the system administrator may not be exceeded. The last limit is that
each process can only lock half of physical memory may be locked at a time. This
is a bit non-functional as there is nothing to stop a process forking a number of
times and each child locking a portion but as only root processes are allowed to lock
pages, it does not make much difference. It is safe to presume that a root process
is trusted and knows what it is doing. If it does not, the system administrator with
the resulting broken system probably deserves it.

9.3.9 Unlocking the region

The system calls munlock() and munlockall() provide the corollary for the locking
functions and map to sys_munlock() and sys_munlockall() respectively. The
functions are much simpler than the locking functions as they do not have to make
much checks. They both too rely on do_mmap() to do the work of fixing up the
regions.

9.3.10. Fixing up regions after locking 108

9.3.10 Fixing up regions after locking

When a locking or unlocking occurs, VMA’s will be affected in one of four ways
ways which has to be fixed up by mlock_fixup(). The locking may affect the whole
VMA in which case mlock_fixup_all() is called. The second condition, handled
by mlock_fixup_start(), is where the start of the region is locked, requiring a
new VMA is allocated to map the new area. The third condition, handled by
mlock_fixup_end(), is predictably enough where the end of the region is locked.
Finally, mlock_fixup_middle(), handles the case where the middle of a region is
mapped requiring two new VMA’s to be allocated.

It is interesting to note that VMAs created as a result of a locking are never
merged, even when unlocked. It is presumed that processes which lock regions will
need to lock the same regions over and over again and it is not worth the processor
power to constantly merge and split regions.

9.3.11 Deleting a memory region

The function responsible for deleting memory regions or parts thereof is do_munmap().
It is a relatively simple operation in comparison to the other memory region related
operations and is basically divided up into three parts. The first is to fix up the
red-black tree for the region that is about to be unmapped. The second is to release
the pages and PTE’s related to the region to be unmapped and the third is to fix
up the regions if a hole has been generated.

do_munmap

remove_shared_vm_struct zap_page_rangeunmap_fixup free_pgtables

lock_vma_mappings __remove_shared_vm_structunlock_vma_mappings__insert_vm_struct

Figure 9.10: Call Graph: do_munmap

To ensure the red-black tree is ordered correctly, all VMAs to be affected by the
unmap are placed on a linked list called free and then deleted from the red-black
tree with rb_erase(). The regions if they still exist will be added with their new
addresses later during the fixup.

Next the linked list of free is walked through and checks are made to en-
sure it is not a partial unmapping. Even if a region is just to be partially un-
mapped, remove_shared_vm_struct() is still called to remove the shared file map-
ping. Again, if this is a partial unmapping, it will be recreated during fixup.
zap_page_range() is called to remove all the pages associated with the region about
to be unmapped before unmap_fixup() is called to handle partial unmappings.

9.3.12. Deleting all memory regions 109

Lastly free_pgtables() is called to try and free up all the page table entries
associated with the unmapped region. It is important to note that the page table
entry freeing is not exhaustive. It will only unmap full PGD directories and their
entries so for example, if only half a PGD was used for the mapping, no page table
entries will be freed. This is because a finer grained freeing of page table entries
would be too expensive to free up data structures that are both small and likely to
be used again.

9.3.12 Deleting all memory regions

During process exit, it is necessary to unmap all VMAs associated with a mm. The
function responsible is exit_mmap(). It is a very simply function which flushes the
CPU cache before walking through the linked list of VMAs, unmapping each of them
in turn and freeing up the associated pages before flushing the TLB and deleting
the page table entries. It is covered in detail in the companion document.

9.4 Exception Handling

A very important part of VM is how exceptions related to bad kernel address ref-
erences are caught3 which are not a result of a kernel bug4. This section does not
cover the exceptions that are raised with errors such as divide by zero, we are only
concerned with the exception raised as the result of a page fault. There is two situ-
ations where a bad reference may occur. The first is where a process sends an invalid
pointer to the kernel via a system call which the kernel must be able to safely trap
as the only check made initially is that the address is below PAGE_OFFSET. The
second is where the kernel uses copy_from_user() or copy_to_user() to read or
write data from userspace.

At compile time, the linker creates an exception table in the __ex_table sec-
tion of the kernel code segment which starts at __start___ex_table and ends
at__stop___ex_table. Each entry is of type exception_table_entry which
is a pair consisting of an execution point and a fixup routine. When an exception oc-
curs that the page fault handler cannot manage, it calls search_exception_table()
to see if a fixup routine has been provided for an error at the faulting instruction.
If module support is compiled, each modules exception table will also be searched.

If the address of the current exception is found in the table, the corresponding
location of the fixup code is returned and executed. We will see in Section 9.6 how
this is used to trap bad reads and writes to userspace.

3Many thanks go to Ingo Oeser for clearing up the details of how this is implemented
4Of course bad references due to kernel bugs should rightfully cause the system to have a minor

fit

9.5. Page Faulting 110

9.5 Page Faulting

Pages in the process linear address space are not necessarily resident in memory. For
example, allocations made on behalf of a process are not satisfied immediately as
the space is just reserved with the vm_area_struct. Other examples of non-resident
pages include the page having been swapped out to backing storage, writing a read-
only page or simple programming error.

Linux, like most operating system, has a Demand Fetch policy as its fetch
policy for dealing with pages not resident. This states that the page is only fetched
from backing storage when the hardware raises a page fault which the operating
system traps and allocates a page. The characteristics of backing storage imply
that some sort of page prefetching policy would result in less page faults[MM87] but
Linux is fairly primitive in this respect. When a page is paged in from swap space,
a number of pages after it, up to 2page_cluster is read in by swapin_readahead()
and placed in the swap cache. Unfortunately there is not much guarantee that the
pages placed in swap are related to each other or likely to be used soon.

There is two types of page fault, major and minor faults. Major fault have to have
the data fetched from disk else it is referred to as a minor or soft page fault. Linux
maintains statistics on these two types of fault with the task_struct→maj_flt
and task_struct→min_flt respectively.

The page fault handler in Linux is expected to recognise and act on a number
of different types of page faults listed in Table 9.4 which will be discussed in detail
later in this section.

Each architecture registers an architecture specific function for the handling
of page faults. While the name of this function is arbitrary, a common choice is
do_page_fault() whose call graph for the x86 is shown in Figure 9.11.

This function is provided with a wealth of information such as the address of the
fault, whether the page was simply not found or was a a protection error, whether
it was a read or write fault and whether it is a fault from user or kernel space. It is
responsible for determining which type of fault it has and how it should be handled
by the architecture independent code. The flow chart which shows broadly speaking
what this function does is shown in Figure 9.12. In the figure, points with a colon
after it is the label as shown in the code.

handle_mm_fault() is the architecture independent top level function for fault-
ing in a page from backing storage, performing COW and so on. If it returns 1,
it was a minor fault, 2 was a major fault, 0 sends a SIGBUS error and any other
invokes the out of memory handler.

9.5.1 Handling a Page Fault

Once the exception handler has decided it is a normal page fault, handle_mm_fault(),
whose call graph is shown in Figure 9.13, takes over. It allocates the required page
table entries if they do not already exist and calls handle_pte_fault().

Based on the properties of the PTE, one of the handler functions shown in the
call graph will be used. The first checks are made if the PTE is marked not present

9.5.1. Handling a Page Fault 111

Exception Type Action
Region valid but page not al-
located

Minor Allocate a page frame from the
physical page allocator

Region not valid but is beside
an expandable region like the
stack

Minor Expand the region and allocate
a page

Page swapped out but present
in swap cache

Minor Remove the page from the
swap cache and allocate it to
the process

Page swapped out to backing
storage

Major Find where the page with in-
formation stored in the PTE
and read it from disk

Page write when marked read-
only

Minor If the page is a COW page,
make a copy of it, mark it writ-
able and assign it to the pro-
cess. If it is in fact a bad write,
send a SEGSEV signal

Region is invalid or process has
no permissions to access

Error Send a SEGSEGV signal to the
process

Fault occurred in the kernel
portion address space

Minor If the fault occurred in the
vmalloc area of the address
space, a page is allocated and
placed. This is the only valid
kernel page fault that may oc-
cur

Fault occurred in the userspace
region while in kernel mode

Error If a fault occurs, it means a ker-
nel system did not copy from
userspace properly and caused
a page fault. This is a ker-
nel bug which is treated quite
severely.

Table 9.4: Reasons For Page Faulting

9.5.2. Demand Allocation 112

do_page_fault

force_sig_info find_vma handle_mm_fault search_exception_table

handle_pte_fault pte_alloc

do_wp_page do_swap_page establish_pte do_no_page

do_anonymous_page lru_cache_add

search_one_table

Figure 9.11: Call Graph: do_page_fault

as shown by pte_present() then pte_none() is called. If it returns there is no
PTE, do_no_page() is called which handles Demand Allocation, otherwise it is
a page that has been swapped out to disk and do_swap_page() is what is required
for Demand Paging.

The second option if if the page is been written to. If the PTE is write protected,
then do_wp_page() is called as the page is a Copy-On-Write (COW) page as the
VMA for the region is marked writable even if the individual PTE is not. Otherwise
the page is simply marked dirty as it has been written to.

The last option is if the page has been read and is present but a fault still
occurred. This can occur with some architectures that do not have a three level
page table. In this case, the PTE is simply established and marked young.

9.5.2 Demand Allocation

When a process accesses a page for the very first time, the page has to be allocated
and possibly filled with data by the do_no_page() function. If the managing VMA
has filled in the vm_ops struct and has supplied a nopage(), it is called. This is of
importance to a memory mapped device such as a video card which needs to allocate
the page and supply data on access or to a mapped file which must retrieve its data
from backing storage.

9.5.3. Demand Paging 113

Handling anonymous pages If the struct is not filled in or a nopage() function
is not supplied, the function do_anonymous_page() is called to handle an anonym-
ous access which we will discuss first as it is simpler. There is only two cases to
handle, first time read and first time write. As it is an anonymous page, the first
read is an easy case as no data exists so the system wide empty_zero_page which
is just a page of zeros5 is mapped for the PTE and the PTE is write protected. The
PTE is write protected so another page fault will occur if the process writes to the
page.

If this is the first write to the page alloc_page() is called to allocate a free
page (see Chapter 6) and is zero filled by clear_user_highpage(). Assuming the
page was successfully allocated the Resident Set Size (rss) field in the mark-
structmm_struct will be incremented, flush_page_to_ram() is called as it is re-
quired when a page is been inserted into a userspace process by some architectures
to ensure cache coherency, the page is inserted on the LRU lists so it may be re-
claimed later by the swapping code and finally the page table entries for the process
are updated for the new mapping.

Handling file/device backed pages If backed by a file or device, a nopage()
function will be provided. In the file backed case the function filemap_nopage()
is the nopage() function for allocating a page and reading a pages worth of data
from disk. Each device driver provides a different nopage() whose internals are
unimportant to us here as long as it returns a valid struct page to use.

On return of the page, a check is made to ensure a page was successfully allocated
and appropriate errors returned if not. A check is then made to see should an early
COW break take place. An early COW break will take place if the fault is a write
to the page and the VM_SHARED flag is not included in the managing VMA. An
early break is a case of allocating a new page and copying the data across before
reducing the reference count to the page returned by the nopage() function.

In either case, a check is then made with pte_none() to ensure there isn’t a
PTE already in the page table that is about to be used. It is possible with SMP
that two faults would occur for the same page at close to the same time and as the
spinlocks are not held for the full duration of the fault, this check has to be made at
the last instant. If there has been no race, the PTE is assigned, statistics updated
and the architecture hooks for cache coherency called.

9.5.3 Demand Paging

When a page is swapped out to backing storage, the function do_swap_page() is
responsible for reading the page back in. The information needed to find it is stored
within the PTE itself. They information within the PTE is enough to find the page
in swap. As pages may be shared between multiple processes, they can not always
be swapped out immediately. Instead, when a page is swapped out, it is placed
within the swap cache.

5On the x86, it is zerod out in the function mem_init()

9.5.4. Copy On Write (COW) Pages 114

A shared page can not be swapped out immediately because there is no way of
mapping a struct page to the PTE’s of each process it is shared between. Searching
the page tables of all processes is simply far too expensive. It is worth nothing that
the late 2.5.x kernels and 2.4.x with a custom patch have what is called Reverse
Mapping (rmap). With rmap, the PTE’s a page is mapped by are linked together
in a chain so they can be reverse looked up.

With the swap cache existing, it is possible that when a fault occurs it still exists
in the swap cache. If it is, the reference count to the page is simply increased and
it’s placed within the process page tables again and registers as a minor page fault.

If the page exists only on disk swapin_readahead() is called which reads in
the requested page and a number of pages after it. The number of pages read
in is determined by the variable page_cluster defined in mm/swap.c . On low
memory machines with less than 16MiB of RAM, it is initialised as 2 or 3 otherwise.
The number of pages read in is 2page_cluster unless a bad or empty swap entry is
encountered. This works on the premise that a seek is the most expensive operation
in time so once the seek has completed, the succeeding pages should also be read in.

9.5.4 Copy On Write (COW) Pages

Traditionally when a process forked, the parent address space was copied to duplicate
it for the child. This was an extremely expensive operation as it is possible a
significant percentage of the process would have to be swapped in from backing
storage. To avoid this considerable overhead, a technique called copy-on-write
(COW) is employed.

During fork, the PTE’s of the two processes are made read-only so that when
a write occurs there will be a page fault. Linux recognizes a COW page because
even though the PTE is write protected, the controlling VMA shows the region is
writable. It uses the function function do_wp_page() to handle it by making a copy
of the page and assigning it to the writing process. If necessary, a new swap slot
will be reserved for the page. With this method, only the page table entries have to
be copied during a fork.

9.6 Copying To/From Userspace

It is not safe to access memory in the process address space directly as there is no
way to quickly check if the page addressed is resident or not. Instead, Linux provides
an ample API for copying data to and from user safely as shown in Table 9.5.

All the macros map on to assembler functions which all follow similar patterns of
implementation so for illustration purposes, we’ll just trace how copy_from_user()
is implemented on the x86.

copy_from_user()maps on to one of two functions __constant_copy_from_user()
or __generic_copy_from_user() depending on if the size of the copy is known at
compile time or not. If the size is known at compile time, there is different assembler

9.6. Copying To/From Userspace 115

copy_from_user(void *to, const void *from, unsigned long n)
Copies n bytes from the user address space (from) to the kernel address

space (to)

copy_to_user(void *to, const void *from, unsigned long n)
Copies n bytes from the kernel address space (from) to the user address

space (to)

get_user(void *to, void *from)
Copies an integer value from userspace (from) to kernel space (to)

put_user(void *from, void *to)
Copies an integer value from kernel space (from) to userspace (to)

strncpy_from_user(char *dst, const char *src, long count)
Copies a null terminated string of at most count bytes long from

userspace (src) to kernel space (dst)

strlen_user(const char *s, long n)
Returns the length, upper bound by n, of the userspace string including

the terminating NULL

Table 9.5: Accessing Process Address Space API

optimisations to copy data in 1, 2 or 4 byte strides otherwise the distinction between
the two copy functions is not important.

The generic copy function eventually calls the function __copy_user_zeroing()
in include/asm-i386/uaccess.h which has three important parts. The first part
is the assembler for the actual copying of size number of bytes from userspace. If
any page is not resident, a page fault will occur and if the address is valid, it will
get swapped in as normal. The second part is “fixup” code and the third part is the
__ex_table mapping the instructions from the first part to the fixup code in the
second part.

These pairings, as described in Section 9.4, copy the location of the copy instruc-
tions and the location of the fixup code the kernel exception handle table by the
linker. If an invalid address is read, the function do_page_fault() will fall through,
call search_exception_table() and find the EIP where the faulty read took place
and jump to the fixup code which copies zeros into the remaining kernel space, fixes
up registers and returns. In this manner, the kernel can safely access userspace with
no expensive checks and letting the MMU hardware handle the exceptions.

All the other functions that access userspace follow a similar pattern.

9.6. Copying To/From Userspace 116

Figure 9.12: do_page_fault Flow Diagram

9.6. Copying To/From Userspace 117

handle_mm_fault

pte_alloc handle_pte_fault

do_no_page do_swap_page do_wp_page

do_anonymous_page

Figure 9.13: Call Graph: handle_mm_fault

do_no_page

do_anonymous_page

lru_cache_add mark_page_accessed

Figure 9.14: Call Graph: do_no_page

9.6. Copying To/From Userspace 118

do_swap_page

lookup_swap_cache swapin_readahead

read_swap_cache_async

mark_page_accessed lock_page swap_free remove_exclusive_swap_page can_share_swap_page unlock_page

activate_page

activate_page_nolock

exclusive_swap_page page_waitqueue

Figure 9.15: Call Graph: do_swap_page

do_wp_page

can_share_swap_page unlock_page

establish_pte

copy_cow_page break_cow lru_cache_add

exclusive_swap_page page_waitqueue

Figure 9.16: Call Graph: do_wp_page

Chapter 10

High Memory Management

119

Chapter 11

Page Frame Reclamation

A running system will eventually use all page frames for purposes like disk buffers,
dentries, inode entries or process pages. Linux needs to begin selecting old pages
which can be freed and invalidated for new uses before physical memory is exhausted.
This section will focus exclusively on how Linux implements it’s page replacement
policy and how different types of pages are invalidated.

The methods Linux uses to select pages is rather empirical in nature and the
theory behind the approach is based on multiple different ideas. It has been shown
to work well in practice and adjustments are made based on user feedback and
benchmarks.

All pages, except those used by the slab allocator, in use by the system are
initially stored on the page cache via the page→lru so they can be easily scanned for
replacement. The slab pages are not stored within the page cache as it is considerably
more difficult to age a page based on the objects used by the slab.

Process pages are stored in the page cache but are not easily swappable as there
is no way to map page structs to PTE’s except to search every page table which is far
too expensive. If the page cache has a large number of process pages in it, process
page tables will be walked and pages swapped out by swap_out() until enough
pages has been freed but this will still have trouble with shared pages. If a page
is shared, a swap entry is allocated, the PTE filled with the necessary information
to find the page again and the reference count decremented. Only when the count
reaches zero will the page be actually swapped out. These type of shared pages are
considered to be in the swap cache.

11.1 Page Swap Daemon (kswapd)

At system start, a kernel thread called kswapd is started from kswapd_init()
which continuously executes the function kswapd() in mm/vmscan.c that usually
sleeps. This daemon is responsible for reclaiming pages when memory is running
low. Historically, kswapd used to wake up every 10 seconds but now it is only woken
by the physical page allocator when the pages_low number of free pages in a zone
is reached (See Section 3.2.1).

120

11.1. Page Swap Daemon (kswapd) 121

kswapd

kswapd_can_sleep kswapd_balance

kswapd_can_sleep_pgdat kswapd_balance_pgdat

try_to_free_pages_zone check_classzone_need_balance

shrink_caches out_of_memory

kmem_cache_reap refill_inactive shrink_cache shrink_dcache_memory shrink_icache_memory

Figure 11.1: Call Graph: kswapd

It is this daemon that performs most of the tasks needed to maintain the
page cache correctly, shrink slab caches and swap out processes if necessary. Un-
like swapout daemons such as Solaris[JM01] which is woken up with increas-
ing frequency as there is memory pressure, kswapd keeps freeing pages until the
pages_high limit is reached. Under extreme memory pressure, processes will
do the work of kswapd synchronously by calling balance_classzone() which
calls try_to_free_pages_zone(). The physical page allocator will also call
try_to_free_pages_zone() when the zone it is allocating from is under heavy
pressure.

When kswapd is woken up, it performs the following;

• Calls kswapd_can_sleep() which cycles through all zones checking the
need_balance field in the zone_t struct. If any of them are set, it can not
sleep

• If it cannot sleep, it is removed from the kswapd_wait wait queue.

• kswapd_balance() is called which cycles through all zones. It will free pages
in a zone with try_to_free_pages_zone() if need_balance is set and will
keep freeing until the pages_high watermark is reached.

• The task queue for tq_disk is run so that pages will be written out

• Add kswapd back to the kswapd_wait queue and go back to the first step

11.2. Page Cache 122

11.2 Page Cache

The page cache consists of two lists defined in mm/page_alloc.c called active_list
and inactive_list which broadly speaking store the “hot” and “cold” pages respect-
ively. The lists are protected by the pagemap_lru_lock. The objective is for the
active_list to contain the working set[Den70] and the inactive_list contain pages
that can be reclaimed.

Figure 11.2: Page Cache LRU List

The page cache is generally said to use a Least Recently Used (LRU) based
replacement algorithm but that is not strictly speaking true as the lists are not
strictly maintained in LRU order. They instead resemble a simplified LRU 2Q[JS94]
where two lists called Am and A1 are maintained. Pages when first allocated are
placed on a FIFO queue called A1. If they are referenced while on that queue, they
are placed in a normal LRU managed list called Am. This is roughly analogous
to using lru_cache_add() to place pages on a queue called inactive_list (A1) and
using mark_page_accessed() to get moved to the active_list (Am). The algorithm
describes how the size of the two lists have to be tuned but Linux takes a simpler
approach by using refill_inactive() to move pages from the bottom of active_list
to inactive_list to keep active_list about two thirds the size of the total page cache.

The lists described for 2Q presumes Am is an LRU list but the list in Linux
closer resembles a Clock algorithm[Car84] where the handspread is the size of the
active list. When pages reach the bottom of the list, the referenced flag is checked,
if it is set, it is moved back to the top of the list and the next page checked. If it is
cleared, it is moved to the inactive_list.

11.3. Shrinking all caches 123

11.3 Shrinking all caches

The function responsible for shrinking the various caches is shrink_caches(). It
takes a few simple steps to free up some memory. The maximum number of pages
that will be written to disk in any given pass is nr_pages which is initialised by
try_to_free_pages_zone() to be SWAP_CLUSTER_MAX1 The limitation
is there so that if kswapd schedules a large number of pages to be swapped to disk, it
will sleep occasionally to allow the IO to takes place. As pages are freed, nr_pages
is decremented to keep count.

The amount of work that will be performed also depends on the priority ini-
tialised by try_to_free_pages_zone() to be DEF_PRIORITY2. For each pass
that does not free up enough pages, the priority is decremented for the highest
priority been 1.

The function first it calls kmem_cache_reap() (See Section 8.1.7) which selects
a slab cache to shrink. If nr_pages number of pages are freed, the work is complete
and the function returns otherwise it will try to free nr_pages from other caches.

If other caches are the be affected, refill_inactive() to move pages from the
active_list to the inactive_list discussed in the next subsection.

Next it shrinks the page cache by reclaiming pages at the end of the inactive_list
with shrink_cache(). If there is a large number of pages in the queue that belong
to processes, whole processes will be swapped out with swap_out()

Finally it shrinks three special caches, the dcache (shrink_dcache_memory()),
the icache (shrink_icache_memory())and the dqcache (shrink_dqcache_memory()).
These objects are quite small in themselves but a cascading effect allows a lot more
pages to be freed in the form of buffer and disk caches.

11.4 Page Hash

11.5 Inode Queue

11.6 Refilling inactive_list

Every time caches are being shrunk by the function shrink_caches(), pages are
moved from the active_list to the inactive_list by the function refill_inactive().
It takes as a parameter the number of pages to move which is calculated as a ratio
depending on nr_pages, the number of pages in active_list and the number of pages
in inactive_list. The number of pages to move is calculated as

pages = nr_pages ∗ nr_active_pages
2 ∗ (nr_inactive_pages+ 1)

1Currently statically defined as 32 in mm/vmscan.c
2Currently statically defined as 6 in mm/vmscan.c

11.7. Reclaiming pages from the page cache 124

shrink_caches

kmem_cache_reap refill_inactive shrink_cache shrink_dcache_memory shrink_icache_memory

try_to_release_page swap_out __remove_inode_page __delete_from_swap_cache swap_free __free_pages

try_to_free_buffers swap_out_mm mmput

find_vma swap_out_vma

swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 11.3: Call Graph: shrink_caches

This keeps the active_list about two thirds the size of the inactive_list and the
number of pages to move is determined as a ratio based on how many pages we
desire to swap out (nr_pages).

Pages are taken from the end of the active_list. If the PG_referenced flag is set,
it is cleared and the page is put back at top of the active_list as it has been recently
used and is still “hot”. If the flag is cleared, it is moved to the inactive_list and
the PG_referenced flag set so that it will be quickly promoted to the active_list if
necessary.

11.7 Reclaiming pages from the page cache

The function shrink_cache() is the part of the replacement algorithm which takes
pages from the inactive_list and decides how they should be swapped out. The
two starting parameters which determine how much work will be performed are
nr_pages and priority. nr_pages starts out as SWAP_CLUSTER_MAX and
priority starts as DEF_PRIORITY.

Two parameters, max_scan and max_mapped determine how much work
the function will do and are affected by the priority. Each time the function
shrink_caches() is called without enough pages being freed, the priority will be

11.7. Reclaiming pages from the page cache 125

decreased until the highest priority 1 is reached.
max_scan is the maximum number of pages will be scanned by this function

and is simply calculated as

max_scan =
nr_inactive_pages

priority

where nr_inactive_pages is the number of pages in the inactive_list. This means
that at lowest priority 6, at most one sixth of the pages in the inactive_list will be
scanned and at highest priority, all of them will be.

The second parameter is max_mapped which determines how many process
pages are allowed to exist in the page cache before whole processes will be swapped
out. This is calculated as the minimum of either one tenth of max_scan or

maxmapped = nr_pages ∗ 2(10−priority)

In other words, at lowest priority, the maximum number of mapped pages allowed
is either one tenth of max_scan or 16 times the number of pages to swap out
(nr_pages) whichever is the lower number. At high priority, it is either one tenth
of max_scan or 512 times the number of pages to swap out.

From there, the function is basically a very large for loop which scans at most
max_scan pages to free up nr_pages pages from the end of the inactive_list or until
the inactive_list is empty. After each page, it checks to see should it reschedule itself
if it has used up it’s quanta so that the swapper does not monopolise the CPU.

For each type of page found on the list, it makes a different decision on what to
to. The page types and actions are as follows;

Page is mapped by a process. The max_mapped is decremented. If it reaches 0,
the page tables of processes will be lineraly searched and swapped out started by
the function swap_out()

Page is locked and the PG_launder bit is set. A reference to the page is taken
with page_cache_get() so that the page will not disappear and wait_on_page() is
called which sleeps until the IO is complete. Once it is completed, page_cache_release()
is called to decrement the reference count. When the count reaches zero, it is freed.

Page is dirty, is unmapped by all processes, has no buffers and belongs to a
device or file mapping. The PG_dirty bit is cleared and the PG_launder bit is
set. A reference to the page is taken with page_cache_get() so the page will not
disappear prematurely and then the provided writepage() function provided by
the mapping is called to clean the page. The last case will pick up this page during
the next pass and wait for the IO to complete if necessary.

Page has buffers associated with data on disk. A reference is taken to the page
and an attempt is made to free the pages with try_to_release_page(). If it
succeeds and is an anonymous page, the page can be freed. If it is backed by a file
or device, the reference is simply dropped and the page will be freed later however
it is unclear how a page could have both associated buffers and a file mapping.

Page is anonymous belonging to a process and has no associated buffers. The
LRU is unlocked and the page is unlocked. The max_mapped count is decremented.

11.8. Swapping Out Process Pages 126

If it reaches zero, then swap_out() is called to start swapping out entire processes
as there is too many process mapped pages in the page cache. An anonymous page
may have associated buffers if a file was truncated and immediately followed by a
page fault.

Page has no references to it. If the page is in the swap cache, it is deleted from
it as it is now stored in the swap area. If it is part of a file, it is removed from the
inode queue. The page is then deleted from the page cache and freed.

11.8 Swapping Out Process Pages

When the max_mapped number of pages has been found in the page cache,
swap_out() (See Figure 11.4) is called to start swapping out process pages. Starting
from the mm pointed to by swap_mm and the address mm→swap_address, the
page tables are searched forward until nr_pages have been freed.

swap_out

swap_out_mm mmput

find_vma swap_out_vma

swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 11.4: Call Graph: swap_out

All pages are examined regardless of where they are in the lists or when they
were last referenced but pages which are part of the active_list or have been recently
referenced will be skipped over. The examination of hot pages is a bit costly but
nothing in comparison to linearly searching all processes for the PTE’s that reference
a particular struct page.

Once it has been decided to swap out pages from a process, an attempt will be
made to swap out at least SWAP_CLUSTER number of pages and the full list of
mm_struct’s will only be examined once so avoid constant looping when no pages
are available. Writing out the pages in bulk like this increases the chance that pages

11.8. Swapping Out Process Pages 127

close together in the process address space will be written out to adjacent slots on
disk.

swap_mm is initialised to point to init_mm and the swap_address is initial-
ised to 0 the first time it is used. A task has been fully searched when the
swap_address is equal to TASK_SIZE. Once a task has been selected to swap
pages from, the reference count to the mm_struct is incremented so that it will not
be freed early and swap_out_mm is called with the selected mm as a parameter.
This function walks each VMA the process holds and calls swap_out_vma for it.
This is to avoid having to walk the entire page table which will be largely sparse.
swap_out_pgd() and swap_out_pmd() walk the page tables for given VMA until
finally try_to_swap_out() is called on the actual page and PTE.

try_to_swap_out() first checks to make sure the page isn’t part of the act-
ive_list, been recently referenced or part of a zone that we are not interested in.
Once it has been established this is a page to be swapped out, it is removed from
the page tables of the process and further work is performed. It is at this point the
PTE is checked to see if it is dirty. If it is, the struct page flags will be updated to
reflect that so that it will get laundered. Pages with buffers are not handled further
as they can not be swapped out to backing storage so the PTE for the process is
simply established again and the page will be flushed later.

If this is the first time the page has been swapped, a swap entry is allocated for
it with get_swap_page() and the page is added to the swap cache. If the page is
already part of the swap cache, the reference to it in the current process will be
simply dropped, when it reaches 0, the page will be freed. Once in the swap cache,
the PTE in the process page tables will be updated with the information needed to
get the page from swap again. This is important because it means the PTE’s for a
process can never be swapped out or discarded.

11.8. Swapping Out Process Pages 128

add_to_page_cache(struct page * page, struct address_space * map-
ping, unsigned long offset)

Adds a page to the page cache with lru_cache_add() in addition to
adding it to the inode queue and page hash tables. Important for pages
backed by files on disk

lru_cache_add(struct page * page)
Add a cold page to the inactive_list. Will be followed by

mark_page_accessed() if known to be a hot page, such as when a page
is faulted in

lru_cache_del(struct page *page)
Removes a page from the page cache by calling either

del_page_from_active_list() or del_page_from_inactive_list(),
whichever is appropriate

mark_page_accessed(struct page *page)
Mark that the page has been accessed. If it had not been recently

referenced (in the inactive_list and PG_referenced flag not set), the
referenced flag is set. If it is referenced a second time, activate_page()
which marks the page hot is called and the referenced flag cleared

page_cache_get(struct page *page)
Increases the reference count to a page already in the page cache

page_cache_release(struct page *page)
An alias for __free_page(). The reference count is decremented and

if it drops to 0, the page will be freed

activate_page(struct page * page)
Removed a page from the inactive_list and placed it on active_list.

It is very rarely called directly as the caller has to know the page is on
the inactive list. mark_page_accessed() should be used instead

Table 11.1: Page Cache API

Chapter 12

Swap Management

12.1 Swap Cache

129

Chapter 13

Out Of Memory Management

When the machine is low on memory, old page frames will be reclaimed (See Chapter
11 but during the process is may find it was unable to free enough pages to satisfy
a request even when scanning at highest priority. If it does fail to free page frames,
out_out_memory() is called to see if the system is out of memory and needs to kill
a process.

out_of_memory

oom_kill

select_bad_process oom_kill_task yield

badness

int_sqrt

force_sig

force_sig_info

sys_sched_yield

move_last_runqueue

Figure 13.1: Call Graph: out_of_memory

Unfortunately, it is possible that the system is not out memory and simply needs
to wait for IO to complete or for pages to be swapped to backing storage so before
deciding to kill a process, it goes through the following checklist.

• Is there enough swap space left (nr_swap_pages > 0) ? If yes, not OOM

• Has it been more than 5 seconds since the last failure? If yes, not OOM

• Have we failed within the last second? If no, not OOM

• If there hasn’t been 10 failures at least in the last 5 seconds, we’re not OOM

• Has a process been killed within the last 5 seconds? If yes, not OOM

130

13.0.1. Selecting a Process 131

It is only if the above tests are passed that oom_kill() is called to select a
process to kill.

13.0.1 Selecting a Process

The function select_bad_process() is responsible for choosing a process to kill.
It decides by stepping through each running task and calculating how suitable it is
for killing with the function badness(). The badness is calculated as follows, note
that the square roots are integer approximations calculated with int_sqrt();

badness_for_task =
total_vm_for_task

√

(cpu_time_in_seconds) ∗ 4

√

(cpu_time_in_minutes)

This has been chosen to select a process that is using a large amount of memory
but is not that long lived. Processes which have been running a long time are
unlikely to be the cause of memory shortage so this calculation is likely to select a
process that uses a lot of memory but has not been running long. If the process is a
root process or has CAP_SYS_ADMIN capabilities, the points are divided by four
as it is assumed that root privilege processes are well behaved. Similarly, if it has
CAP_SYS_RAWIO capabilities (access to raw devices) privileges, the points are
further divided by 4 as it is undesirable to kill a process that has direct access to
hardware.

Once a task is selected, the list is walked again and each process that shares the
same mm_struct as the selected process (i.e. they are threads) is sent a signal. If
the process has CAP_SYS_RAWIO capabilities, a SIGTERM is sent to give the
process a chance of exiting cleanly, otherwise a SIGKILL is sent.

Bibliography

[BA01] Jeff Bonwick and Jonathan Adams. Magazines and vmem: Extending
the slab allocator to many CPUs and arbitrary resources. In Proceedings
of the 2001 USENIX Annual Technical Conference (USENIX-01), pages
15–34, Berkeley, CA, June 25–30 2001. The USENIX Association.

[BBD+98] Michael Beck, Harold Bohme, Mirko Dzladzka, Ulrich Kunitz, Robert
Magnus, and Dirk Verworner. Linux Kernel Internals. Addison-Wesley,
1998.

[BC00] D. (Daniele) Bovet and Marco Cesati. Understanding the Linux kernel.
O’Reilly, 2000.

[BL89] R. Barkley and T. Lee. A lazy buddy system bounded by two coales-
cing delays. In Proceedings of the twelfth ACM symposium on Operating
Systems principles. ACM Press, 1989.

[Bon94] Jeff Bonwick. The slab allocator: An object-caching kernel memory
allocator. In USENIX Summer, pages 87–98, 1994.

[Car84] Rickard W. Carr. Virtual Memory Management. UMI Research Press,
1984.

[CH81] R. W. Carr and J. L. Hennessy. WSClock - A simple and effective
algorithm for virtual memory management. In Proceedings of the ACM
Symposium on Operating System Principles, pages 87–95, Pacific Grove,
CA, December 1981. Association for Computing Machinery.

[CP99] Charles D. Cranor and Gurudatta M. Parulkar. The UVM virtual
memory system. In Proceedings of the 1999 USENIX Annual Technical
Conference (USENIX-99), pages 117–130, Berkeley, CA, 1999. USENIX
Association.

[CS98] Kevin Dowd Charles Severance. High Performance Computing, 2nd Edi-
tion. O’Reilly, 1998.

[Den70] Peter J. Denning. Virtual memory. ACM Computing Surveys (CSUR),
2(3):153–189, 1970.

132

BIBLIOGRAPHY 133

[GAV95] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with multiple
caching strategies tuned to different types of locality. In ACM, editor,
Conference proceedings of the 1995 International Conference on Super-
computing, Barcelona, Spain, July 3–7, 1995, CONFERENCE PRO-
CEEDINGS OF THE INTERNATIONAL CONFERENCE ON SUPER-
COMPUTING 1995; 9th, pages 338–347, New York, NY 10036, USA,
1995. ACM Press.

[GC94] Berny Goodheart and James Cox. The Magic Garden Explained: The
Internals of UNIX System V Release 4, an Open Systems Design. Pren-
tice-Hall, 1994.

[Gor02] Mel Gorman. Code Commentry on the Linux Virtual Memory Manager.
Unpublished, 2002.

[Haca] Various Kernel Hackers. Kernel 2.2.22 source code
. In ftp://ftp.kernel.org/pub/linux/kernel/v2.2/linux-2.2.22.tar.gz.

[Hacb] Various Kernel Hackers. Kernel 2.4.18 source code
. In ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.18.tar.gz.

[Hac00] Random Kernel Hacker. Submittingpatches (how to get your change
into the linux kernel). Kernel Source Documentation Tree, 2000.

[HK97] Amir H. Hashemi and David R. Kaeli. Efficient procedure mapping using
cache line coloring. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI-97), volume
32, 5 of ACM SIGPLAN Notices, pages 171–182, New York, June 15–18
1997. ACM Press.

[JM01] Richard McDougall Jim Maura. Solaris Internals. Rachael Borden, 2001.

[JS94] Theodore Johnson and Dennis Shasha. 2q: a low overhead high per-
formance buffer management replacement algorithm. In Proceedings of
the Twentieth International Conference on Very Large Databases, pages
439–450, Santiago, Chile, 1994.

[JW98] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation
problem: solved? In Proceedings of the first international symposium on
Memory management. ACM Press, 1998.

[KB85] David G. Korn and Kiem-Phong Bo. In search of a better malloc. In
Proceedings of the Summer 1985 USENIX Conference, pages 489–506,
1985.

[Kes91] Richard E. Kessler. Analysis of multi-megabyte secondary CPU cache
memories. Technical Report CS-TR-1991-1032, University of Wisconsin,
Madison, July 1991.

BIBLIOGRAPHY 134

[Kno65] Kenneth C. Knowlton. A fast storage allocator. Communications of the
ACM, 8(10):623–624, 1965.

[Knu68] D. Knuth. The Art of Computer Programming, Fundamental Algorithms,
volume 1. Addison-Wesley, Reading, Mass., 1968.

[McK96] Marshall Kirk McKusick. The design and implementation of the 4.4BSD
operating system. Addison-Wesley, 1996.

[Mil00] David S. Miller. Cache and tlb flushing under linux. Kernel Source
Documentation Tree, 2000.

[MM87] Rodney R. Oldehoeft Maekawa Mamoru, Arthur E. Oldehoeft. Operating
Systems, Advanced Concepts. Benjamin/Cummings Publishing, 1987.

[Ous90] J. K. Ousterhout. Why Aren’t Operating Systems Getting Faster As
Fast as Hardware? In Usenix 1990 Summer Conference, pages 247–256,
jun 1990.

[PN77] James L. Peterson and Theodore A. Norman. Buddy systems. Commu-
nications of the ACM, 20(6):421–431, 1977.

[RC01] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers, 2nd
Edition. O’Reilly, 2001.

[Rus] Paul Rusty Russell. Unreliable guide to locking. Kernel Source Docu-
mentation Tree.

[Sho75] John E. Shore. On the external storage fragmentation produced by
first-fit and best-fit allocation strategies. Communications of the ACM,
18(8):433–440, 1975.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems, 2nd Edition.
Prentice-Hall, 2001.

[Vah96] Uresh Vahalia. UNIX Internals. Prentice-Hall, Upper Saddle River, NJ
07458, USA, 1996.

[WJNB95] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. Lecture Notes in Computer
Science, 986, 1995.

Index

active_list, 120
address_space, 96
alloc_bootmem, 40
__alloc_bootmem, 41
alloc_bootmem_low, 41
__alloc_bootmem_core, 41
alloc_bootmem_low_pages, 41
alloc_bootmem_low_pages_node, 41
alloc_bootmem_node, 41
__alloc_bootmem_node, 41
alloc_bootmem_pages, 41
alloc_bootmem_pages_node, 41
alloc_mm, 92
allocate_mm, 92, 93
arch_get_unmapped_area, 102

Binary Buddy Allocator, 46
Boot Memory Allocator, 37
bootmem_data, 37

cache chain, 61
cache_cache, 83
cache_sizes, 80
cache_sizes_t, 79
cc_data, 82
cc_entry, 82
ccupdate_t, 83
CFGS_OFF_SLAB, 73, 85
CFLGS_OPTIMIZE, 85
check_pgt_cache, 34
clear_user_highpage, 113
ClearPageActive, 27
ClearPageDirty, 27
ClearPageError, 27
ClearPageLaunder, 27
ClearPageReferenced, 27
ClearPageReserved, 27
ClearPageUptodate, 27

clock_searchp, 70
CONFIG_SLAB_DEBUG, 66
contig_page_data, 18
copy-on-write (COW), 115
copy_from_user, 87
copy_mm, 93
copy_to_user, 87
cpu_vm_mask, 92
cpucache, 81

def_flags, 92
DEF_PRIORITY, 121
Demand Allocation, 112
Demand Fetch, 109
Demand Paging, 112
DFLGS_GROWN, 67
diff, 11
do_anonymous_page, 113
do_ccupdate_local, 83
do_mmap_pgoff, 100
do_munmap, 107
do_no_page, 112
do_page_fault, 109
do_swap_page, 28, 112, 114
do_wp_page, 112, 115

empty_zero_page, 113
enable_all_cpucaches, 83
enable_cpucache, 82
exception_table_entry, 108
_end, 39
exit_mmap, 93

filemap_nopage, 113
__ex_table, 108
find_max_low_pfn, 39
find_max_pfn, 39
find_vma, 100

135

INDEX 136

find_vma_intersection, 102
find_vma_prepare, 103
find_vma_prev, 100
fixrange_init, 36
flush_page_to_ram, 113
free_all_bootmem, 42
free_all_bootmem_node, 42
free_area_t, 47
free_bootmem, 42
free_bootmem_node, 42
free_initmem, 43
free_mm, 93
free_pages_init, 42
free_pgtables, 107

g_cpucache_up, 83
gengraph, 8
GET_PAGE_CACHE, 72
GET_PAGE_SLAB, 72
get_pgd_fast, 34
get_pgd_slow, 34
get_unmapped_area, 102
GFP (Get Free Page), 51
GFP_ATOMIC, 53, 54
GFP_DMA, 51
__GFP_DMA, 51
GFP_HIGHUSER, 53, 54
__GFP_FS, 52
GFP_KERNEL, 53, 54
__GFP_HIGH, 52
GFP_KSWAPD, 53, 54
__GFP_HIGHIO, 52
GFP_NFS, 53, 54
__GFP_HIGHMEM, 51
GFP_NOFS, 53, 54
__GFP_IO, 52
GFP_NOHIGHIO, 53, 54
GFP_NOIO, 53, 54
GFP_USER, 53, 54

handle_mm_fault, 111
__GFP_WAIT, 52
handle_pte_fault, 112
highend_pfn, 38
highstart_pfn, 38

inactive_list, 120
INIT_MM, 93
__init, 43
init_mm, 93
__init_begin, 43
insert_vm_struct, 103
__init_end, 43

kfree, 81
kmalloc, 80
kmap, 56
kmem_bufctl_t, 74
kmem_cache, 83
kmem_cache_init, 84
kmem_cache_slabmgmt, 73
kmem_freepages, 84
kmem_getpages, 84
kmem_tune_cpucache, 82
kswapd, 118
kswapd_wait, 119
kunmap, 56

Lazy TLB, 89
Least Recently Used (LRU), 120
locked_vm, 92
LockPage, 27
LXR, 13

MARK_USED, 47
MAX_DMA_ADDRESS, 41
max_low_pfn, 38
max_mapped, 122
MAX_NR_ZONES, 24
MAX_ORDER, 46
max_pfn, 38
max_scan, 122
mem_init, 42
merge_segments, 104
min_low_pfn, 38
mk_pte, 33
mk_pte_phys, 33
mlock_fixup, 106
mlock_fixup_all, 107
mlock_fixup_end, 107
mlock_fixup_middle, 107
mlock_fixup_start, 107

INDEX 137

mm_alloc, 93
mm_count, 90
mm_drop, 93
mm_init, 92, 93
mm_struct, 89
mm_users, 90
mmap_sem, 92
mmlist, 92
mmput, 93
move_page_tables, 105
move_vma, 104
mremap, 104

nr_pages, 122

one_highpage_init, 42

Page Frame Number (PFN), 37, 38
Page Frame Number (pfn), 39
page struct, 23
PAGE_ALIGN, 30
page_cluster, 115
PAGE_OFFSET, 87
PAGE_SHIFT, 30
PageActive, 27
PageChecked, 27
PageClearSlab, 27
PageDirty, 27
PageError, 27
PageHighMem, 27
PageLaunder, 27
PageLocked, 27
PageLRU, 27
PageReferenced, 27
PageReserved, 27
pages_high, 23
pages_low, 22
pages_min, 22
PageSetSlab, 27
PageSlab, 27
PageUptodate, 27
paging_init, 36
patch, 11
pg0, 35
pg1, 35
PG_active, 26

PG_arch_1, 26
PG_checked, 26
pg_data_t, 19
__pgd, 30
PG_dirty, 26
PG_error, 26
PG_highmem, 26
PG_launder, 26
PG_locked, 26
PG_lru, 26
PG_referenced, 26
__pgprot, 30
PG_reserved, 26
PG_skip, 26
PG_slab, 26
PG_unused, 26
PG_uptodate, 26
PGD, 28
pgd_alloc, 34
pgd_free, 34
pgd_quicklist, 34
pgd_t, 28
pgd_val, 30
PGDIR_SHIFT, 30
pglist_data, 19
pgprot_t, 30
pgprot_val, 30
PKMAP_BASE, 56
pmd_alloc, 34
__pmd, 30
pmd_alloc_one, 34
pmd_alloc_one_fast, 34
pmd_free, 34
pmd_page, 33
pmd_quicklist, 34
PMD_SHIFT, 30
pmd_t, 28
pmd_val, 30
pte_alloc, 34
__pte, 30
pte_alloc_one, 34
pte_alloc_one_fast, 34
pte_clear, 33
pte_dirty, 33
pte_exec, 33

INDEX 138

pte_exprotect, 33
pte_free, 34
pte_mkclean, 33
pte_mkdirty, 33
pte_mkexec, 33
pte_mkread, 33
pte_mkwrite, 33
pte_mkyoung, 33
pte_modify, 33
pte_old, 33
pte_page, 33
pte_quicklist, 34
pte_rdprotect, 33
pte_read, 33
pte_t, 28
pte_val, 30
pte_write, 33
pte_wrprotect, 33
pte_young, 33
ptep_get_and_clear, 33
PTRS_PER_PGD, 30
PTRS_PER_PMD, 30
PTRS_PER_PTE, 30

quicklists, 34

REAP_SCANLEN, 70
Resident Set Size (RSS), 92
Resident Set Size (rss), 113
Reverse Mapping (rmap), 114
rss, 92

search_exception_table, 108
SET_PAGE_CACHE, 72
set_pte, 33
SetPageActive, 27
SetPageChecked, 27
SetPageDirty, 27
SetPageError, 27
SetPageLaunder, 27
SetPageReferenced, 27
SetPageReserved, 27
SetPageUptodate, 27
setup_arch, 38
setup_memory, 38
size-X cache, 79

size-X(DMA) cache, 79
slab descriptor, 73
SLAB_ATOMIC, 86
slab_bufctl, 75
SLAB_CACHE_DMA, 86
SLAB_DMA, 86
SLAB_HWCACHE_ALIGN, 86
SLAB_KERNEL, 86
SLAB_NFS, 86
SLAB_NO_REAP, 86
SLAB_NOFS, 86
SLAB_NOHIGHIO, 86
SLAB_NOIO, 86
SLAB_USER, 86
slabs, 61
slabs_free, 64
slabs_full, 64
slabs_partial, 64
startup_32, 35
struct kmem_cache_s, 64
struct page, 23
swap cache, 118
SWAP_CLUSTER_MAX, 121
swap_mm, 124
swap_out_mm, 125
swap_out_vma, 125
swapin_readahead, 109, 114
swapper_pg_dir, 35
sys_mlock, 105
sys_mlockall, 105
sys_mmap2, 100
sys_mprotect, 104
sys_mremap, 104
sys_munlock, 106
sys_munlockall, 106

TestClearPageLRU, 27
TestSetPageLRU, 27
total_vm, 92
tq_disk, 119
Trivial Patch Monkey, 16
try_to_free_buffers(), 52

UnlockPage, 27
unmap_fixup, 107

INDEX 139

vm_struct, 57
vma_link, 103
vma_merge, 104
vmalloc, 52, 56
VMALLOC_OFFSET, 56
vmlist_lock, 57

working set, 120

Zone watermarks, 22
ZONE_DMA, 18
ZONE_HIGHMEM, 18
ZONE_NORMAL, 18
zone_t, 21
zone_table, 24
Zones, 21

INDEX 140

[Gor02] [Knu68] [Vah96] [McK96] [JM01] [CS98] [BC00] [RC01] [GC94] [Tan01]
[MM87] [BBD+98] [JS94] [Bon94] [BA01] [KB85] [JW98] [BL89] [HK97] [GAV95]
[Hacb] [Haca] [CP99] [Ous90] [CH81] [PN77] [Kno65] [WJNB95] [Rus] [Den70]
[Hac00] [Mil00] [Sho75] [Kes91]

