
A programmer’s C. P. ~~~h
by F. E. Levine

view of
pertormance
monitoring
in the PowerPC
microprocessor

Performance monitor (PM) support in on-chip
PowerPC@’ microprocessors is used to analyze
processor, software, and system attributes for
a variety of workloads. The interface to the
PowerPC 604@ microprocessor, which we
abbreviate “604,” has been externalized to end
users. We discuss the enhanced PM support
available in an upgrade of the 604, the
PowerPC m e T M microprocessor, which we
abbreviate “604e.” We discuss the challenges
related to the externalization of the PM
support as it relates to other PowerPC
processors not derived from the 604 and
briefly contrast these PMs with other PMs. We
also describe an application programming
interface (API) to the on-chip PM support,
its design methodology, and its usage
considerations, intended to meet these
challenges.

Introduction
Performance monitors (PMs), which provide detailed
processor and system data, have traditionally been viewed
as proprietary hardware luxuries that are available only to

large multichip processors. With the rapid evolution of
microprocessor technology, its complexity has matched or
exceeded that of the old mainframe technology. A full
understanding of system characteristics for complex
workloads is unobtainable without some additional
hardware assistance. The use of test instruments attached
to the external processor interface has not been entirely
satisfactory. Such instruments cannot determine the nature
of the internal operations of a processor, and they cannot
distinguish among instructions executing in the processor.
Because this approach requires extra hardware and
significant expertise, even a simple bus trace may not be
practical in most development environments. Test
instruments designed to probe the internal components of
a processor are typically considered prohibitively expensive
because of the difficulty associated with monitoring the
many buses and probe points of complex processor
systems that employ pipelines, instruction prefetching,
data buffering, and more than one level of memory
hierarchy within the processors. A common approach for
providing performance data is to change or instrument the
software. This approach, however, significantly affects the
path of execution and may invalidate any results collected.
For these reasons, the concerns related to performance

“Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, hut no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-servlce systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/97/$5.00 0 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 F. E. LEVINE AND C. P. ROTH

345

analysis have been recognized by other processor
manufacturers such as Intel**, which included a PM in the
Pentiurn** and Pentium Pro**.

The externalization of the PM interface for the high-
volume PowerPC 604* [l] microprocessor has changed the
perception that such interfaces are proprietary, and has
raised the standard of excellence in this area. It has also
encouraged other manufacturers to disclose their PM
interfaces, which had not previously been described in
their user manuals. The functionality of the 604 PM has
generally been regarded as excellent, and its widespread
use has ensured that most new PowerPC* processors
intended for use in servers, workstations, or personal
computers will have an on-chip PM and the
documentation required to access the PM. We describe
some enhancements that have been incorporated in an
update to the 604, the 604e. Although many capabilities
and the means of accessing them are similar among
different PowerPC processor families, there are some
areas of difference. We discuss the PM application
programming interface (API) approach to address the
areas of difference in performance monitoring support
that are found between different PowerPC processors.

Evolution of performance monitors in POWER
and PowerPC processors
Early versions of RISC System/6000* POWER processors
had no monitoring support in the processor. In 1991, cards
were created to attach and monitor processor bus activity.

In 1992, the RISC System/6000 POWER2* [2]
processor, which we refer to as the “P2,” had 22 counters
integrated in four units, which were implemented as
separate chips. The P2 PM provided up to 16 groups for
each unit. A selected group from a unit would allow for
the counting of five events (fixed for each group) on five
counters. The selection of a group for a unit allowed for
the counting of five extremely low-level (at most one
count per cycle) events that occurred within the unit. It
took many counters to determine the total number of
instructions dispatched.

The design of the P2 provides counting control based
on a process or thread context and a user-versus-system
execution. For the process or thread context, the hardware
interface allows a bit in the machine status register (MSR)
called the PMM bit to control counting. The operating
system must support the setting and propagation of the bit
as part of the process or thread context in order to use
this support. The hardware interface provides support to
prohibit counting while the processor is in user mode or in
system mode. The supervisor-versus-application state is
also maintained in the MSR.

manufactured with an on-chip PM built into the design.
In 1993, revision 2.0 of the 604 was sent to be

346 The 604 PM contained the same support as the P2 had for

F. E. LEVINE AND C. P. ROTH

the PMM bit and the ability to suppress counting when
operating in application or system mode.

In 1995, the 604e was released to manufacturing with a
more extensive PM than that provided for the 604. The
enhancement includes two more counters and about twice
as many events. Compared to the P2, the 604 and 604e
contain a rich set of functional enhancements, many of
which are described in this paper.

call the “P2SC,” was shipped in systems; thirty-two were
incorporated in “Deep Blue,” the computer that defeated
G. Kasparov in a chess match sponsored by IBM. The
P2SC contains a performance monitor derived from that
of the P2. The P2SC has two dedicated counters, of which
one always counts cycles (as was supported in the P2) and
the other counts instructions completed. The P2SC also
has five counters which can select events from each of the
five event positions in any group in any unit. Unlike the
P2, the P2SC supports events that increment by more than
one per cycle. The P2 and P2SC allow counting but do not
support some of the additional features incorporated into
the PowerPC processors (e.g., taking an interrupt when a
counter is negative, that is, when bit zero is on). With the
P2 and P2SC, care must be taken to read the counters
before they wrap to avoid incorrectly accumulating counts.

In 1997, the PowerPC 620* microprocessor is under
development, with a PM that has features similar to the
604e and some additional features and counters.

Use of the PM
Reference [2] provides a description of the P2 PM and its
intended use, while Reference [l] describes the 604 PM
and details its intended use. Reference [3] also describes
the 604 PM, including specific examples related to event
sampling, thresholding, and symmetric multiprocessor
(SMP) analysis. Reference [4] shows how the 604 PM can
be used to examine and contrast the effects of hardware
variations on system performance, while Reference [5]
describes the intended use of the 604e PM and provides
some additional insight into items mentioned in this
paper.

The sampling techniques described in Reference [6] are
instrumental to most PM applications. Sampling can be
used to identify specific areas of poor performance, which
may be minimized in either the hardware or the software.
For example, by providing for a determination of the
amount and types of misaligned accesses in relationship to
aligned accesses, one can determine the penalty associated
with leaving the data misaligned. Use of the profiling
capability and the information on misaligned accesses
allows one to estimate the performance improvement
expected from changing the code. We can also use these
data to determine whether it is worth improving the
processor for a future version.

In 1997, the RISC System/6000 POWER2SC*, which we

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Design of the 604 PM .

A large portion of any code running on a processor is
likely to have been written for a different machine and
even a different machine architecture. Different machines
have different performance characteristics related to the
alignment of the data being accessed. However, when
some of the systems were being developed with a version
of the 604, a simple approach of repeatedly running a
specific application with different events showed that the
time involved in handling access to misaligned data was
causing too much overhead. Because this problem was
occurring on “legacy” code and code running under some
type of emulation, the decision was made to improve
performance related to the handling of unaligned data in

an update of the 604. The data were collected by simply
accumulating all values of counters providing this
information without the need for sampling. The
application ran quickly enough to avoid the problem of
having the counters overflow.

Features of the 604 PM
The 604 on-chip performance monitoring support provides
counting control based on a process or thread context,
user-versus-system execution, interrupt signaling, and a
counter dependency.

The 604 PM (Figure 1) provides support for a PM
interrupt. The monitor can be programmed to signal an

IBM J. RES, DEVELOP. VOL. 41 NO, 3 MAY 1997 F. E. LEVINE AND C. P. ROTH

347

exception when a counter is negative or if a selected
timebase bit switches from 0 to 1. The timebase is
intended to be synchronized among all processors in a
multiprocessor system and is discussed in The PowerPC
Architecture* [7]. The exception is masked by the MSR
exception-enable (EE) bit. When the EE bit is on and no
higher-priority exception is pending, the exception is
supported by transferring control to the software at the
PM interrupt vector, which is at the real memory
address Oxf00. When a PM interrupt is signaledl
the sampled instruction address register (SIAR) is set
to the address of an instruction which is executing.
Simultaneously with the setting of the SIAR, the sampled
data address register (SDAR) is set to the operand of
an instruction which is executing. The priority of the
performance monitor interrupt is higher than the
decrementer interrupt priority and lower than the external
interrupt priority. This priority allows software to take the
PM interrupt before a task switch occurs. At the time
the PM interrupt is taken, the operating system has
interrupted the task for which the SIAR and SDAR are
valid, allowing the operating system to identify the correct
task. Another use for the PM interrupt is simply to ensure
that all internally maintained counts include the fact that
a counter has become negative and is about to overflow.
This is typically handled by adding the value of the
counters at the time the interrupt is taken to the software-
maintained internal values and resetting the counters to
zero.

The hardware interface supports the function of having
PM counter n (PMCn), n > 1, wait to start counting until
PMCl is negative (bit zero on). We call this the trigger
function, although the 604 user’s manual identifies this as
the discount function. This is intended to allow counting
to start after a specific condition has occurred a selectable
number of times.

Threshold support is provided in the 604 PM for loads
and stores. The threshold value is identified by a field in
monitor mode control register 0 (MMCRO). The threshold
can be used to analyze the true cost of queueing [4]. The
604 allows the threshold to be gated by an external pin,
which was intended to support lateral intervention (data
in another processor’s cache in an SMP system).

on a counter value and the setting of the SIAR and the
SDAR provide a profiling capability whereby the
technique of sampling can be used to identify the
frequency of occurrence of the monitored events as it ,
relates to specific pieces of code. For any item that can be
counted, this profiling capability provides a means to
identify the pieces of code in which the measured item
occurs and its relative frequency of occurrence. This
information provides a valuable tool for operating system
developers and processor developers.

The ability to control the signaling of exceptions based

348

F. E. LEVINE AND C. P. ROTH

Features of the 604e PM
The PM support in the first release of the 604 is described
in its user manual [l], which documents a two-counter
implementation with 40 unique events. The primary
purpose of the 604 PM is to provide an aid to operating
system developers and application developers who wish to
tune software. The 604e PM (Figure 2) provides more
counters and more events. Many of the new events are
intended to provide more insight into the internal
workings of the processor itself. Other PowerPC
processors, with different internal characteristics intended
for different system platforms, are expected to have
different performance-monitoring requirements. For this
reason, one should not expect consistency among different
PowerPC processors with respect to the number of
counters or the actual events available for monitoring.

PM support for the 604e has a total of 111 unique
events that can be measured. The additional counters and
events were added in an upward-compatible manner, so
that code written for the two-counter 604 can run on the
four-counter 604e. We use the phrase “additional support”
to indicate events that can be measured in the 604e but
not in the 604.

The 604e provides additional support to study a
program’s memory access patterns and interaction with a
system’s memory hierarchy. Additional support was added
to the already rich support in the 604 because memory
access patterns can be adjusted by system developers, and
they typically have a significant impact on the performance
of a given workload. Also, understanding memory
hierarchy behavior aids in developing algorithms that
schedule and/or partition tasks, as well as distribute and
structure data for optimizing the system. This is especially
true in SMP environments, where data may be needed by
one processor but held by another. For these reasons,
events related to the MESI [modified, exclusive, shared,
invalid (cache consistency protocol)] protocol are available
for analysis.

The length of time it takes to service a queue has been
added via specific implementation of Little’s law: “The
average time a customer spends in a system equals the
average number of customers in the system divided by the
average rate at which a customer enters or leaves the
system.” Applying this law to the processor system, the
average time required to process an instruction (e.g., a
load or store) equals the average number of instructions
held in the instruction queue divided by the average
number of instructions in the queue. By knowing the
average processing time for instructions, designers develop
a better understanding of the actual time spent executing
instructions. Using this information, system designers may
decide to change the hardware or software elements to
increase system performance in the most appropriate
manner.

1BM J . RES. DEVELOP. 1 IOL. 41 NO. 3 MAY 1997

B F Design of the 604e PM .

Because PowerPC processors are able to execute
instructions out of order and speculatively, it is possible
that forward progress may be made while a particular unit
is waiting for data. If a unit has some work to perform but
is unable to do any useful work, we say that that unit is
“stalled.” If a unit has no work to perform because it has
no instructions to execute, we say that that unit is “idle.”
Providing information related to idles, stalls, and the
general efficiency of individual units not only helps in the
understanding of the processor internals, but also provides
information that may be used for software tuning
(including compiler-scheduling algorithms) and system
design considerations. For example, information related to

the dispatch unit may be used to determine whether there
is too much hardware support for dispatching a specified
number of instructions in a single cycle. By reducing the
hardware support and dispatching fewer instructions in a
single cycle, it may be possible to increase the cycle
frequency and speed up the overall performance. Such
action may provide for feedback into compiler-scheduling
algorithms as well as feedback into future processor
design. Stalls identify processor resource deficiencies; for
example, one can determine whether the processor
provides enough reorder buffers.

of occurrences of certain classes of instructions (e.g.,
In the 604e, support was added to count the number

349

IBM J. K t S . DEVELOP. VOL. 41 NO. 3 M A Y 1997 F. E. LEVINE AND C . P. ROTH

instructions that serialize execution). By identifying the
amount of time spent executing a specified instruction,
the number of occurrences of the instruction, and the
addresses of the occurrences, one can use this collected
information to determine the expected improvement in
performance for proposed changes regarding the handling
of the instruction in either the software or the hardware.

The 604e provides the ability to count matches at a
specific instruction address. By selecting this event to
measure in PMCl and using the triger function, called
discount in the 604 manual, one has the ability to start
counting when a specified instruction has been executed a
specific number of times.

The 604e also provides the ability to count the number
of cycles spent while interrupts are inhibited or while an
interrupt is pending and interrupts are inhibited. This
information can be used to pinpoint software anomalies,
in which interrupts are inhibited for too long a period of
time.

The speculative execution of instructions provides for an
opportunity to do useful work by prefetching results
required to avoid bottlenecks. If the branch-prediction
logic is effective, many stalls can be avoided or minimized.
If the branch-prediction logic is not effective, the extra
work of fetching unneeded data could even cause the
processor to be less effective than it would be if
speculative execution were simply avoided altogether. The
604e provides support to determine the effectiveness of
the branch-prediction logic.

The 604e also provides the ability to count and identify
misaligned accesses, which facilitates the discovery of the
problem previously described. The 604 did not directly
support the counting of misaligned data accesses, but it did
provide other information which pointed to the problem.
For example, it double-counts misaligned loads, and the
time spent executing loads is available with the threshold
function.

Processor differences
As we have shown, the 604e can measure a wide variety of
events to understand the internals of the processor and to
relate these internals to specific pieces of code. Other
processors that are compliant with the PowerPC
architecture have also developed performance monitor
facilities. Because these processors have different internal
processing algorithms, different events may be selected for
processing. Since the PM facility was not included in the
PowerPC architecture at the time of development of the
604 and the 620, a significant interface difference occurred
in the PM facility between the 32-bit word processors
and the 64-bit word processors. Specifically, the special-
purpose register (SPR) numbers for the PM registers used
in the 32-bit machine are different from those used in the
64-bit machines. The P2 PM and the P2SC PM use 350

F. E. LEVINE AND C. P. ROTH

input/output (I/O) space, that is, specific addresses to
communicate with the software, instead of SPRs. An
updated internal version of the PowerPC architecture now
includes the PM facility in an appendix as an optional
feature which does not require processor developers to
follow the described implementation. However, the
PowerPC architecture does identify the PM interrupt
vector and the currently used PM SPRs as being used by
the optional PM facility. The number of counters, the
events that can be selected on specific counters, the
number of events, and the types of events are all expected
to vary. Although there is a basic set of functions, one can
expect the actual specific functions supported to vary
among the different processor classes. In fact, the
PowerPC architecture appendix describes some features
which are currently incorporated in the 620, but not in the
604e. This appendix describes a mode in which all of the
counters can maintain a cycle-ordered history of
occurrences of the selected events. On a given cycle, the
PMCn register is shifted left and the low-order bit is set
on, if and only if one or more of the selected events
assigned to each PMCn has occurred. With multiple
counters running in this mode, one can observe a cycle-
ordered relationship among the selected events. It also
describes the instruction address break-point register
(IABR), which can be used by the PM to prohibit
counting until execution occurs at a specific address in a
process where counting would otherwise have been enabled.

The PM API approach to conceal differences
To alleviate the software problems related to the
differences among the various PowerPC processors, the
development of a PM application programming interface
(API) is underway.

differences from applications; to increase the flexibility of
processor implementations; to facilitate the development
of tools to use the PM functions; to promote the use of
the PM; and to create an open interface (available to all
operating systems on PowerPC systems).

The PM API is designed to conceal PM processor

Requirements and objectives of the PM API
Figure 3 depicts at a high level the placement of the PM API
in the software hierarchy. The PM API software is being
developed to work as an internal IBM tool which runs
under the AIX* Operating System Version 4.2. Although
there is no commitment from IBM to make the PM API a
product or to provide any support for this tool, the source
and/or object for this tool is currently made available
(at no charge without any warranties or support) to other
interested parties. A version is currently available and is
under test internally. This preliminary version is available
externally for individuals willing to agree to the no-
charge, no-warranty, and no-support license agreement.

IBM J. F IES. DEVELOP. VOL. 41 NO. 3 MAY 1 991

Requirements
The primary requirement of the PM API is to provide an
access mechanism to the on-chip performance-monitoring
functions. The lowest layer of support should be provided
as a loadable kernel extension for those operating systems
that provide that type of support, or as part of the shipped
operating system for those systems that do not provide
loadable privileged state code.

The support must provide a means to treat the
performance monitor counters as a serial reusable
resource so that the concurrent running of two
applications will not change the integrity of the counting
process.

Objectives
The primary objective of creating an API to the on-chip
performance-monitoring facility is to conceal the processor
differences, encouraging tool writers to access the on-chip
performance-monitoring facilities. If this is done properly,
tools written to the PM API should work “as is” on other
processors with an updated API support. The design
should plan for support to handle items that may change
between different processors, such as SPR numbers
(or other means to communicate with the on-chip
performance-monitoring facility), the number of counters,
the number of events, event-selection values, and
functions supported.

available externally for adaptation to other operating
systems. By making the source and thus the interface
available to other operating systems, we have an “open
interface,” which should promote the development of
shipped and supported tools that use the interface. The
availability of supported tools should encourage additional
functionality on new processors and increase the value of
the performance monitor support.

Another objective is for the PM API to be portable and

Design and definition considerations for the
PM API

Design methodology
We describe the high-level design methodology intended
to meet the requirements and objectives for the PM API.

The actual update of the hardware, defined as SPRs on
PowerPC processors, must be done in the supervisor or
privileged state and is supported by routines in a loadable
kernel extension. In operating systems where loadable
kernel extensions are not supported, these routines must
be provided as part of the operating system support. This
“privileged” code provides interfaces to commonly
required functions. The layer for this support is called the
PM kernel extension (PMkex). In AIX, all data accessed
by the interrupt handler can be accessed only in the
supervisor state. Application requests to the PM API go

Put MI in pmtected memory
Give specific requests to the processor
Send monitor information back

1 Basic API design.

through an application or library layer that validates the
request, ensures the availability of the resource, and
passes the request to the kernel extension layer.
Application data are imported into the PMkex layer using
the AIX operating system routine, copyin. Data are
exported from the PMkex layer to the application layer
using the AIX operating system routine copyout.

Interface dejinition considerations
The interface definitions should follow standards and good
programming practices. The interface must map the basic
functions required by the applications into a “best fit”
provided by the machine-specific support. A method must
be provided to identify exactly what was supported on the
specific processor. The interface and its updates must be
able to support all previously supported functions without
requiring the calling code to be changed or even
recompiled. The support code must be expandable to
allow for new functions to be added. Operating system
dependencies should be as isolated (in the code) as
possible and handled in such a way as to allow for updates
that are operating-system-specific without affecting the
support provided for other operating systems. Expected
enhancements and expected differences between
processors should be isolated in the code so that a given
type of support for a new processor is not expected to
affect the support previously tested and made available.
The interface should facilitate methods which reduce the
invasiveness of measurements on the system under test.
The interface should provide for counter integrity, which
includes exclusive ownership of the counters and the
prevention of undetected counter overflows. 351

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 F. E. LEVINE AND C. P. ROTH

API support functions.

Kernel extension load and unload
A separate utility (PMkexLoad) is supplied to load and
unload the kernel extension. Note that this function is
available only to a user with special authority on AIX.

Application support routines in the PM APZ
The PM API includes application-support routines [8],
which must be called by application programs using the
performance-monitoring functions provided by the kernel
extension layer.

Figure 4 shows the PM API library and kernel extension
support. This layer of the PM API includes the functions
described in the following subsections.

Encoding and decoding
The encoding interface routine [9] maps the caller’s
specified input, including a generic list of events, into a set
of machine-specific controls, which is passed to the routine
that initializes processing for the request. Because some of
the specified requests may not be available (that is, the
required hardware support may not be available on a
given processor), the encoding routine must support
whatever it can and pass back error information regarding
those items it cannot support in hardware. 352

F. E. L .EVINE P

Since the actual events suported by a given processor
are implementation-dependent and the assignment of
events to counters is processor-dependent, the number of
PM requests required to support a given list of events may
vary as a function of the processor. For this reason, there
must be a mechanism to tell the caller which events will
be counted and on which request. Also, the support for
specific parameters may only be approximated; again,
there must be a means to identify the exact values
supported. Although most of this information is returned
by the encoding routine, there are some instances in which
“decoding” of the machine-specific information is helpful.
The decoding interface [lo] can be used when the control
registers are read; it takes the machine-specific requests
and converts them to the generic format which could be
used as input to the encoding routine.

The encoding routine supports the following features:

A revision field to facilitate the addition of future
enhancements without requiring the application using
the old support to be modified or even recompiled.
Flag words and bits within the words that represent
counting control functions.
Flag words and bits within the words that represent
exception control functions.
A separate parameter for the timebasc selection
function using a generic interface, the standard UNIX**
time interface of seconds and nanoseconds. Functions
such as timebase selection and configuration support are
likely to be specific to the operating system as well as to
the machine. Items that are expected to be operating-
system-specific are supported in a separate source file
for easy repackaging and integration as changes are
added to support different operating system environments.
A separate parameter for the threshold uses the generic
interface of processor cycles.
A list of unique event names each of which is defined
with a unique number. The same event name is used on
each processor in which the same event is counted.
A set of parameters allowing the application using this
interface to use the name of the events of interest to
specify exactly what must be counted. The following
specifications are supported: a trigger event (an event
which must occur some application-specified number of
times before additional counting can occur); a correlate
event (an event which must occur on each PM request);
and a list of events to be counted.

Process initialization for counting
The process initialize counting interface (PMprocesslnit)
supports the initialization of the processing of counting
requests which use the encoded, machine-specific
information. PMprocesslnit verifies that no other process

LNND C . P. ROTH IBM J . RES. 1 3EVELOP. \ ’OL. 41 NO. 3 MAY 1 997

has initiated counting on the specified processor and uses
PMkex to copy the detailed processing control information
passed by the caller.

PMprocesslnit allows the application to specify detailed
processing options, including the processor on which to
initialize counting information. PMprocesslnit allows the
application to specify that counting be started or not
started by PMprocesslnit. PMprocesslnit allows the
application to specify the number of passes, that is, the
number of times to cycle through all of the events
requested in the machine-specific information. This
interface provides for an unlimited number of passes. The
application must specify operational modes (e.g., what to
do on each interrupt). The application may specify that
the counters are initialized on each interrupt request or
that the counters are not initialized on each interrupt
request. The application may specify, for each interrupt,
that the same request be issued, the next request be
issued, or no requests be issued. The application may
specify that it be posted on each interrupt; or when a
complete set of events have been processed (i.e., a pass
has been completed); or when all the passes have been
completed. The application may reissue a PMprocesslnit
at any time without relinquishing control of the counters.

Processing control
The process control interface (PMprocess) allows the
application to specify the processor to which the process
control command applies, and a command. The commands
allow the application to specify whether to start counting
with the same set of events previously counted, to cycle to
the next set of events, to stop counting, or to terminate
counting. The terminate counting option relinquishes
control of the counters, allowing another process to gain
control of the counters. The PM API automatically
handles abnormal termination cleanup, which allows reuse
of the counters by a different process; however, if counting
has not been stopped by the application, counting
continues until a new PMprocesslnit has been issued.

Status control
The status interface routine (PMstatus) provides an
interface to read and return the current values of the
performance monitor registers and the accumulated 64-bit
counts maintained by the PM API support routines. In
addition, there is support for returning the values of the
PM registers, accumulated 64-bit counts, and other
information consistent with the previous interrupt.

PM API application considerations

Processor support
The current external release of the PM API code supports
the 604 and the 604e; the current internal release of the

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

PM API supports the 620 and other internal 64-bit
processors. The PowerPC processors not supporting the
PMs are the PowerPC 601*, the PowerPC 603*, and the
PowerPC 603e*. Work is underway to support the P2 and
the P2SC.

Operating system dependencies
The AIX version of the PM API requires AIX 4.2, which
has added features to enable the support. Since the PM
API uses only documented and supported AIX interfaces,
it is not expected to require changes in new AIX releases.
The PM API is expected to work with AIX reliability,
availability, and serviceability (RAS) aids, including trace
and diagnostics.

The non-AIX versions of the PM API should support
identical library interfaces to encode the machine-specific
list from a list of events. However, operating-system-
specific code may have to be quite different and may have
to be incorporated into the kernel (instead of as a kernel
extension) or may have to be modified to use existing
operating system interfaces that are already provided in
the operating system. There are no IBM plans to port the
PM API to a non-AIX operating system.

PM API overhead
As is well known in the physics of elementary particles,
the act of measuring can affect the system being
measured-Heisenberg’s uncertainty principle. Software-
based approaches to measurement also tend to affect the
system under test. The design of the PM API and the PMs
themselves provides for wide flexibility and control over
the invasiveness of measurements. There are many
different modes of operation and many different
applications for measurements.

of the work to set up the control information used to
actually initiate or change what must be counted should
be done prior to running the job to be measured. That is,
the utilization of the encoding routine should not be a
factor in the overhead related to measuring. The overhead
related to initiating counting may be eliminated by
judicious use of the MSR PMM bit when this is
appropriate. Support was added to AIX 4.2 to support
the setting and propagation of the MSR PMM bit in
application (problem state). This feature may be used to
measure a specific application while it is in problem state.
The kernel itself can be compiled to propagate the PMM
bit, although the officially shipped AIX 4.2 kernel object
code does not provide this function. At any rate, all of the
current POWER and PowerPC performance monitors
permit counting to be gated by whether or not the MSR
PMM bit is set. This allows PM hardware to be initialized
for counting before actually starting the process to be
monitored. The determination of those processes which

We now discuss some methodology considerations. All

F. E. LEVINE AND C. P. ROTH

353

have the PMM bit set can then be done as part of the task
of starting those processes. This allows counting to start
with no initiation overhead.

The 620 provides a function that allows counting to
start automatically at a particular effective address
specified by the IABR. Processors that provide support for
this function can again provide a no-overhead method for
initiating counting. Similarly, the trigger function provides
a noninvasive way to begin counting in the remaining
counter(s) after PMCl is negative.

If use of the PMM bit is appropriate, counting stops
automatically when the job is finished; thus, in this case,
the counters can be read after the job has terminated with
no additional overhead. With this approach, measurements
for jobs that run fairly quickly can be made with no
overhead related to the taking of the measurements
themselves.

The PM API always accumulates 64 bits worth of
counter information for each event being counted in order
to avoid the problem of wrapping a counter and losing the
information that a counter has wrapped. This feature can
be programmed to run automatically, so that overhead is
incurred only after a counter has become negative. The
overhead associated with this feature is the overhead
related to taking the PM interrupt, accumulating the
required data, and reinitiating counting as required, about
200:400 instructions. Since this occurs only when a counter
has become negative, it is gated by the initial value(s) of
the counters and the frequency of update of counters.
As an upper bound for this overhead, assuming that
the initial value of zero is used, that the number of
instructions completed is the fastest incrementing counter,
and that the interrupt takes about 400 instructions to
execute, we obtain (400/231) X 100% = 0.0000186%,
which is clearly negligible.

is performed by taking periodic snapshots of the system.
The sampling rate determines the invasiveness of the
sample measurements. Assuming that data are written to a
log, it takes about an additional hundred instructions to
write the data to a log or a total of about five hundred
instructions to process a sample. The log itself may be
pinned and thus may consume a fixed amount of random
access memory (RAM). If the log is pinned, the size of
the log determines the total number of samples allowed.
The current PowerPC performance monitors allow the
sample rate to be selected by the application by allowing a
counter to be set to a value which causes the counter to
go negative after some number of occurrences of an event
(e.g., after one thousand cycles). In addition, these
processors provide the capability to identify one of four
bits in the timebase and force an interrupt when the
selected bit flips. One should note that the increment of

Another significant mode of operation, called sampling,

354 the timebase is not architected and is defined to be

system-specific. For most PowerPC systems that currently
support performance monitoring, the increment of the
timebase is a function of some increment of the processor
bus speed. The actual bits chosen are bits 47, 51, 55, and
63. The PM API allows the application to specify the
desired sample time in seconds and nanoseconds and uses
the system configuration data to determine the selection
of the closest sample rate. The PM API does not allow bit
63 to be used along with direct interrupts. The PM API
provides an option that prevents the system from being
overwhelmed by interrupts, if they occur faster than a
system-specific rate.

There may be an interest in monitoring more events
than there are counters. For repeatable jobs, one may run
the entire job with the first set of events that can be
counted concurrently, then rerun the job with the next set
of events that can be counted concurrently, continuing
until the final set of events are counted. Using this
approach, one can obtain the total counts for all
items that can be counted. For jobs that represent
nonrepeatable workloads, this approach is not feasible.
The PM API provides a few ways to count more events
than can be counted concurrently. The application
specifies the events to be counted, an optional trigger
event, and an optional correlate event. The encoding
routine constructs the encodings required to count all of
the specified events and determines the number of
performance monitor requests required to count all of the
events. The application may use the data received from
the encoding routine to control exactly what gets counted
when. The format of the output from the encoding routine
is made available to the application and can be modified
prior to initiating counting.

continue counting the next set of events; that is, on each
interrupt, the values for those items being counted are
read, and counting is initiated for the next set of items to
be counted. The counts are accumulated as appropriate,
where the trigger event and correlate event are accumulated
on each request, but the other events are only
accumulated once for a full pass (a cycling through all of
the events). When a PM exception is signaled, the SIAR
and SDAR registers are frozen until exceptions are
reenabled. Also, the counters can be programmed to stop
counting when the exception is signaled. If the application
wishes to control the time at which the next set of events
are counted, it can specify to PMprocesslnit that no new
requests be issued while the PM interrupt is being
processed. In this case, the next set of events are counted
only when the PMprocess request is issued with the
continue to the next set of events option. By using the
post option, the application can be posted when an
interrupt occurs and can issue a status to obtain the latest
sampled data. This approach allows the application to

The PM API may then be programmed to automatically

F. E. LEVINE AND C. P. ROTH IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

control the logging of the data and to place the log in
nonpinned memory.

The overhead associated with taking an interrupt is
significant in typical pipelined superscalar machines. The
pipeline is typically drained on entry and exit from the
interrupt routine. Also, the interrupt support typically
takes up some of the processor’s cache when the interrupt
code is being executed. These disruptions are also true for
each system call supported. It is possible to avoid the
cache disruption by putting the interrupt code into
noncacheable write-through memory. However, this
support is not provided by the PM API, although there is
an attempt to minimize the number of system calls and/or
interrupts required to provide the desired function.

Multiprocessor considerations
The design of the PM API provides for separate control
blocks for each processor. In a uniprocessor environment,
the processor number is always forced to zero. When the
configuration information identifies more than one
processor (say N processors), the process initialization
routine uses the AIX bind function (bindprocessor) to
force the current process to be bound to each processor,
from 0 to N - 1. All indexing to the control blocks in an
SMP system uses the processor number.

When counting is initialized (PMprocesslnit), the
application specifies the processor to which it must be
bound. The library routine binds the application to the
specified processor. The process is left bound to the
specified processor after the initialize function is
completed.

When a subsequent PMprocess request is issued, the
application specifies the processor to which it must be
bound. The library routine binds the application to the
specified processor. The process is left bound to the
specified processor after the process function is
completed.

When a PMstatus request is issued, the application
specifies the processor to which it must be bound. The
library routine binds the application to the specified
processor. The process is left bound to the specified
processor after the status function is completed.

The PowerPC performance monitors provide for the
signaling of exceptions when a chosen bit in the timebase
transitions. For all bits other than bit 63, this provides a
means to take a system snapshot at intervals far enough
apart to allow useful processing to occur. Thus, if the
application initiates counting on each processor with the
timebase transition bit exception specified, all of the
processors will signal the PM exception at the same time.
If counting is programmed to stop when the PM exception
is signaled, the data read when the PM interrupt is
actually taken will reflect the state of the system when the
interrupt was signaled. This provides for a cross-sectional

view of what is happening on all processors at the same
time. On AIX, the application can log and use the logged
data to reconstruct the state of the machine on all of the
processors. The application can ensure that virtually any
relevant data are logged (e.g., the process that is in
execution at the time the interrupt is taken). In addition,
the application can profile the relative times spent
executing specific instructions (available from collecting
the SIARs).

Operating systems other than AIX may not support
multiple processors. For these systems, the processor
parameter should be ignored, as is the case in the current
design. Other operating systems that support multiple
processors may not provide a bind function. These
operating systems may, however, force a process to stay on
a specific processor under some specific circumstances
such as a kernel or system call. These issues must be
explored if and when the code is ported to operating
systems other than AIX. Automatic tracing and
logging facilities are not currently supported but may
be supported in a future version of the PM MI. These are
areas that must be addressed when the PM API is ported
to other operating systems.

Reentrancy considerations
The PM API is designed to be reentrant by processor,
where the PM data for each processor are independent
from the data maintained for any other processors. The
application provides the work areas for the encoding
routine and the decoding routine, and all working data
areas are automatic or stack variables. The routines in the
application library are reentrant by processor. The
routines that control the PM counters allow only one
process control over the counters for a specific processor
by using semaphores. All access to the kernel control
blocks occurs while interrupts are inhibited. This
effectively provides a lock on all PM requests such as
status, continue processing to the next set of events, and
interrupt handling.

64-bit considerations
The C code is designed and coded to work correctly with
both 32-bit and 64-bit machines. The assembler code is
tailored to each machine, with the correct object enabled
for execution when the PMkex is loaded as a function of
the machine configuration.

I10 space counters
There is some interest in providing additional support to
control counting in nonprocessor components such as
bridge controllers or memory controllers. The current PM
API does not address this issue. However, there is some
current work underway to support the P2 and the P2SC. 355

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 F. E. LEVINE AND C. P. ROTH

356

F. E. LEVINE AND C. P. ROTH IBM J . RES. DEVELOP. 1

Conclusion
The 604 PM has been used as a significant evaluation and
tuning aid for multiple platforms and individual programs.
The existing functionality has been generally regarded as
excellent, and its widespread use has ensured that most
new PowerPC processors intended for use in servers,
workstations, or personal computers will have an on-chip
PM. In order to take full advantage of the capabilities in
future PowerPC processors, a PM API is being developed.
The dissemination of this PM API is expected to facilitate
the development of tools that can be used on different
processors and systems.

Acknowledgments
The authors wish to express their appreciation to
E. Welbon and T. Keller, who helped identify the initial
set of events to be counted in the 604. E. Welbon has
participated in PM event definition, counter assignment,
and architecture definition on many processors. We also
would like to thank all of the other talented engineers and
software developers across Apple, IBM, and Motorola who
contributed to the success of the PowerPC PM strategy
and implementation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corporation OK
X/Open Co., Ltd.

References
1. IBM Microelectronics Division and Motorola Inc.,

PowerPC 604 RISC Microprocessor User’s Manual, Chapter
9: Performance Monitor, 1994, pp. 9-1-9-11.

“POWER2 Performance Monitor,” IBM RISC Systemi6000
Technology: Volume ZI, IBM Corporation, 1994, pp. 55-62.

3. C. Roth, F. Levine, and E. Welbon, “Performance
Monitoring on the PowerPC 604 Microprocessor,”
Proceedings of the 1995 IEEE International Conference on
Computer Design: VLSI in Computers & Processors,
October 3, 1995, pp. 212-215.

4. C. Roth, F. Levine, E. Welbon, and R. Moore, “Load
Miss Performance Analysis Methodology Using the
PowerPCTM 604 Performance Monitor for OLTP
Workloads,” Proceedings of COMPCON ’96, the Forty-First
IEEE Computer Society International Conference:
Technologies for the Information Superhighway, February

5. C. Roth and F. Levine, “PowerPC Performance Monitor
Evolution,” Proceedings of the 1997 IEEE International
Performance, Computing and Communications Conference,
February 5-7, 1997, pp. 331-336.

“Technique for Speculatively Sampling Performance
Parameters,” IBM Tech. Disclosure Bull. 31, No. 9,
589-592 (September 1994).

7. The PowerPCTM Architecture: A Specification for a New
Family of RZSC Processors, Second Edition, Morgan
Kaufman Publishers, Inc., San Francisco, 1994, pp.

2. E. Welbon, C. Chan-Nui, D. Shippy, and D. Hicks,

25-28, 1996, pp. 111-116.

6. H. Dwyer, R. Heisch, F. Levine, and E. Welbon,

351-357, 479-481.
8. F. Levine, “Generic Performance Interface Approach,”

ZBM Tech. Disclosure Bull. 39, No. 8, 65-68 (August 1996).

9. F. Levine and W. Starke, “Generic Performance Monitor
Interface Events List Encoding,” IBM Tech. Disclosure
Bull. 39, No. 8, 251-254 (August 1996).

10. F. Levine, “Decoding of a Specific Performance Monitor
Encoded Request to a Generic Format,” IBM Tech.
Disclosure Bull. 39, No. 8, 169-171 (August 1996).

Received August 8, 1996; accepted for publication
June 3, 1997

Frank E. Levine IBM Microelectronics Division, 11400
Burnet Road, Austin, Texas 78758 (levine@austin.ibm.com).
Mr. Levine received a B.S. in mathematics from Tufts
University in 1970 and an M.S. in mathematics from Purdue
University in 1972. He continued taking graduate courses in
mathematics and computer science until 1974, when he joined
the IBM Federal Systems Division, where he was a lead
programmer for various software components for the ground
support system for the shuttle at Cape Kennedy, Florida. In
1979, he moved to Austin, Texas, where he was a lead
programmer on various software development projects,
including Displaywriter*, Displaywrite*, and OS/2 EE* Data
Base Manager. In 1989, Mr. Levine became a Software
Development Program Manager for AIX* RISC System/6000*
development projects. In 1992, he joined the PowerPC System
Architecture Department and coauthored the book RISC
Systemi6000 PowerPC System Architecture, which was published
by Morgan Kaufmann Publishers, Inc. In 1995, he started
work on the PM API, which he is currently enhancing, with
P2 and PZSC support scheduled to be completed in 1997.

Charles P. Roth Somerset Design Center, IBM Corporation,
11400 Burnet Road, Austin, Texas 78758 (cproth@ibmoto.com).
Mr. Roth received a B.S. in electrical engineering from Texas
A&M University in 1989 and an M.S. in electrical engineering
from the University of Texas at Austin in 1991. In 1989 he
joined the IBM RISC System/6000 processor design group in
Austin, where he worked on the design verification of the
POWER and RSC (RISC single-chip) processors. In 1991 he
joined the PowerPC microprocessor design team, where he
has contributed to the design of the PowerPC 601*, PowerPC
604, and PowerPC 604e microprocessors in the areas of timing
analysis, design methodology, performance monitoring
instrumentation, and logic design. He is currently working on
an undisclosed PowerPC product.

IOL. 41 NO. 3 MAY 1997

