
ARM 구조
- ARM v7 중심으로 -

민 홍

1

Memory-consistency models

• SMP (Symmetric Multiprocessor) System

– a multiprocessor computer hardware and software architecture

where two or more identical processors are connected to a

single shared main memory

2
<출처: Wikipedia>

Memory-consistency models

• Memory model

– What types of memory reordering to expect at runtime

relative to a given source code listing

3
<출처: preshing on programming>

Memory-consistency models

• Level of reordering

4

<출처: preshing on programming>

Memory-consistency models

• Weak Memory Models

– Any load or store operation can effectively be reordered with any other load

or store operation

– The reordering may be due to either compiler reordering of instructions, or

memory reordering on the processor

• Weak With Data Dependency Ordering

– If you write A->B, it always guarantees to load a value of B after loading a

value of A.

• Strong Memory Models

– When one CPU core performs a sequence of writes, every other CPU core

sees those values change in the same order that they were written.

• Sequential Consistency

– There is no memory reordering
5

Exception

6

Exception?

• Any condition that needs to halt normal execution and

instead run software associated with each exception

type, known as an exception handler

• The unprivileged User mode can switch to another

mode only by generating an exception

7

Exception mode

8

ARM Exceptions Types

• Reset

– Occurs when the processor reset pin is asserted

• For signaling Power-up

• For resetting as if the processor has just powered up

– Software reset

• Can be done by branching to the reset vector (0x0000)

• Undefined instruction

– Occurs when the processor or coprocessors cannot recognize

the currently execution instruction

9

ARM Exceptions Types

• Software Interrupt (SWI)

– User-defined interrupt instruction

– Allow a program running in User mode to request privileged

operations that are in Supervisor mode

• Prefetch Abort

– Fetch an instruction from an illegal address, the instruction is

flagged as invalid

– However, instructions already in the pipeline continue to execute

until the invalid instruction is reached and then a Prefetch Abort

is generated

10

ARM Exceptions Types

• Data Abort

– A data transfer instruction attempts to load or store data at an illegal address

• IRQ

– The processor external interrupt request pin is asserted and the I bit in the

CPSR is set

• FIQ

– The processor external interrupt request pin is asserted and the I and F bit in

the CPSR are set

• Breakpoint (BKPT)

– Similar to prefetch abort

– Prefetch abort occurs at Execute stage of the pipeline

11

Vector Table

• At the low or high of the memory map

– Low: 0x00000000

– High: 0xFFFF0000

• Each entry has only 32 bit

– Not enough to contain the full code for a handler

– Branch instruction or load PC instruction to the actual handler

12

Vector Table

13

Exception priorities

14

Exception handling

• Entering an exception handler (Hardware)

– The processor saves the current status and the return address

– Enters a specific mode

– Disables hardware interrupts

– Execution is then forced from a fixed memory address called an

exception vector

• Exit from an exception handler (Software)

– CPSR = SPSR_[exception_mode]

– PC = R14

15

SWI and Undefined Instruction

• SWI and undefined instruction exceptions are

generated by the instruction itself

– lr_mode = pc + 4 //next instruction

• Restoring the program counter

– If not using stack: MOVS pc, lr //pc = lr

– If using stack to store the return address

• STMFD sp!, {reglist, lr} //when entering the handler

…

LDMFD sp!, {reglist, pc}^ //when leaving the handler

16

FIQ and IRQ

• FIQ and IRQ are generated only after the execution of

an instruction

• The program counter has been updated

• lr_mode = PC + 4

– Point to one instruction beyond the end of the instruction in

which the exception occurred

17

FIQ and IRQ

• Restoring the program counter

– If not using stack: SUBS pc, lr, #4 //pc = lr-4

– If using stack to store the return address

• SUB lr, lr, #4 //when entering the handler

STMFD sp!, {reglist, lr}

…

LDMFD sp!, {reglist, pc}^ //when leaving the handler

18

Prefetch Abort

• If the processor supports MMU (Memory Management Unit)

– The exception handler loads the unmapped instruction into

physical memory

– Then, uses the MMU to map the virtual memory location into the

physical one

• The handler must return to retry the instruction that caused

the exception

• The lr_ABT points to the instruction at the address following

the one that caused the abort exception

19

Prefetch Abort

• The address to be restored is at lr_ABT – 4

– If not using stack: SUBS pc,lr,#4

– If using stack to store the return address

• SUB lr,lr,#4 ;handler entry code

STMFD sp!,{reglist,lr}

...

LDMFD sp!,{reglist,pc}^ ; handler exit code

20

Data Abort

• lr_ABT points two instructions beyond the instruction

that caused the abort (lr_mode = pc + 4)

– When a load or store instruction tries to access memory, the

program counter has been updated

– The instruction caused the data abort exception is at lr_ABT – 8

• The address to be restored is at lr_ABT – 8

21

Data Abort

• The address to be restored is at lr_ABT – 8

– If not using stack: SUBS pc,lr,#8

– If using stack to store the return address

• SUB lr,lr,#8 ;handler entry code

STMFD sp!,{reglist,lr}

...

LDMFD sp!,{reglist,pc}^ ; handler exit code

22

Caches

23

Caches

• Pros

– Speed things up

• Cons

– program execution time can become non-deterministic

– lack coherence

– some extra work to manage

24

Cache types

• Level 1 (L1) caches

– connected directly to the processor logic

– Size: 16KB or 32KB

• Level 2 (L2) caches

– It can be inside the processor itself (Cortex-A8 and A15) or be

implemented as an external block

– Size: 256KB, 512KB or 1MB

25

Cache terminology

• Line

– the smallest loadable unit of a cache, a block of contiguous

words from main memory

• Index

– the part of a memory address which determines in which

line(s) of the cache the address can be found

• Way

– a subdivision of a cache, each way being of equal size and

indexed in the same fashion

26

Cache terminology

• Set

– The line associated with a particular index value from each

cache way grouped together

• Tag

– the part of a memory address stored within the cache which

identifies the main memory address associated with a line of

data

27

Cache terminology

28

Implementing caches

• Direct mapped caches

• Pros

– Simple

• Cons

– Thrashing

• Load

and

evict repeatedly

at the same cache line

29

Set associative caches

• To reduce thrashing problem

– Tag + set index + offset

30

Set associative caches

• A real-life example - 32KB 4-way set associative cache

31

Physical Cache vs. Logical Cache

32

Virtual and physical tags and indexes

• Early ARM processors

– used virtual addresses to provide both the index and tag values

– +: the processor can do a cache look-up without the need for a virtual to

physical address translation

– -: changing the virtual to physical mappings in the system means that

the cache must first be cleaned and invalidated

• ARM11 family processors

– Index: Virtual address / Tag: Physical address

– Virtually Indexed, Physically Tagged (VIPT)

– +: Reduce cache clean and flush

– -: During cache lookup, it should access MMU

33

Virtual and physical tags and indexes

• Cortex-A8 process

– a VIPT implementation in its instruction cache, but not its data

cache

• Recent Cortex-A series

– Physically Indexed, Physically Tagged (PIPT) cache

34

PIPT
(Physically indexed, physically tagged)

35

<출처: iamroot Kernel 6차 Members>

VIPT
(Virtually indexed, physically tagged)

36

<출처: iamroot Kernel 6차 Members>

VIVT
(Virtually indexed, virtually tagged)

37

<출처: iamroot Kernel 6차 Members>

Cache policies

• Allocation policy

• Replacement policy

• Write policy

38

Allocation policy

• read allocate

– allocates a cache line only on a read

– If a write is performed by the processor which misses in the

cache, the cache is not affected and the write goes to main

memory

• read-write cache allocate

– allocates a cache line for either a read or write which misses

in the cache

39

Replacement policy

• Round-robin or cyclic replacement

– Increment the victim counter by one

• Pseudo-random replacement

– randomly selects the next cache line in a set to replace

40

Write policy

• Write-through

– With this policy writes are performed to both the cache and

main memory

– the cache and main memory are kept coherent

• Write-back

– writes are performed only to the cache, and not to main

memory

– cache lines and main memory can contain different data

– a dirty line should be written to main memory before eviction

41

Write buffer

• implemented using a number of FIFOs

• The processor does not have to wait for the write to

be completed to main memory

• increase the performance of the system

42

Invalidating cache memory

• Invalidation of a cache (or cache line) means to clear it

of data

• The cache always needs to be invalidated after reset

automatically except Cortex-A9 processor

• write-back cacheable regions would be lost by simple

invalidation

43

Cleaning cache memory

• write the contents of dirty cache lines out to main

memory and clear the dirty bit(s) in the cache line

• It is only applicable for data caches in which a write-

back policy is used

44

Self-modifying code

• Problem

– Some existing JIT-compiled code was generated at run-time to

load a function address into a register and then branch to it

– How to execute the modified code?

45

Self-modifying code

• Solution

– get data from the D-cache into the I-cache

– to push the data out to memory => clearing D-cache lines

– wait for the write to complete

46

Self-modifying code
• Solution

– tell the processor that the contents of the I-cache are
invalidated and need to be re-loaded from memory

– The commands to clean and/or invalidate the cache are CP15
operations

47

Cache lockdown

• the programmer to place critical code/or and data into

cache memory and protect it from eviction

• For avoiding any cache miss penalty

• Ex> code and data of a critical interrupt handler

48

Tightly Coupled Memory

• An alternative to using cache lockdown (H/W approach)

• a block of fast memory located next to the processor

core

• Hold instructions or data required for real-time code

which needs deterministic behavior

• However, TCM is not supported in Cortex-A series

processors

49

Memory Management Unit

50

What for?

• need a way to partition the memory map and assign

permissions and memory attributes to these regions of

memory

• programming of applications much simpler

• virtual address space is separate from the actual

physical map of memory in the system

• translation of virtual addresses into physical addresses

51

Virtual and physical memory

52

Level 1 page tables

• The base address of the L1 page table is known as the

Translation Table Base Address and is held within a

register in CP15 c2

53

Entry index

Base Address

Level 1 page table entry format

• A fault entry that generates an abort exception
• An entry that points to an L2 page table
• A 1MB section translation entry
• A 16MB supersection

54

Generating a physical address from a level
1 page table entry

55

Level 2 page tables

• L2 page table has 256 word-sized entries
– A fault page entry generates an abort exception if accessed
– A large page entry points to a 64KB page
– A small page entry points a 4KB page

56

Generating the address of the level 2 page
table entry

57

Summary of generation of physical address
using the L2 page table entry

58

Translation Look-aside Buffer

• a cache of page translations within the MMU

• On a memory access, the MMU first checks whether

the translation is cached in the TLB

• TLB hit, and the TLB provides the translation of the

physical address immediately

59

TLB structure

• Attributes: memory type, cache policies, access permissions

• ASID value – Address Space ID

60

TLB operation

• There are several CP15 operations available

– It is essential to invalidate the TLB when a valid page table

entry is changed

– a global invalidate of the TLB

– removal of specific entries

• Support for locking individual entries into the TLB

61

Choice of page sizes

• Small-size page

– Smaller page sizes allow finer control of a block of memory and

potentially can reduce the amount of unused memory in a page

– Smaller page sizes also allow increased precision of control over

permissions

• Large-size page

– Each entry in the TLB holds a reference to a larger piece of

memory (increase TLB hit ratio)

– fewer page table walks to slow external memory

62

Memory attributes

• Memory Access Permissions

63

Cache and Write Buffer Bit

I-Cache D-Cache

C-bit Page property C-Bit B-Bit Page property

0 Not cached 0 0
Not cached,
Not buffered

1 cached 0 1
Not Cached,

Buffered

1 0
Cached,

Write-through

1 1
Cached,

Write-back

64

Domains

• The ARM architecture has an unusual feature which enables

regions of memory to be tagged with a domain ID

• There are 16 domain IDs provided by the hardware

• CP15 c3 contains the Domain Access Control Register which holds

a set of 2-bit permissions for each domain number

• Modes

– No-access

• an abort on any access to a page in this domain

– Manager

• ignores all page permissions and enables full access

– Client

• the permissions of the pages tagged with the domain
65

Address Space ID

• If the nG bit is set for a particular page, it means that the page is

associated with a specific application and is not global

• This means that when the MMU performs a translation, it uses

both the virtual address and an ASID value

• The ASID is a number assigned by the OS to each individual task

• This value is in the range

• 0-255 and the value for the current task is written in the ASID

register

66

ASIDs in TLB mapping same virtual
address

67

Features of Cortex-A15 MMU

• Large Physical Address Extensions (LPAE)

– Address mapping for a 40-bit address space, 4GB -> 1024GB

– A new page table entry format - the “long-descriptor format” is

added

– This is set to show that the entry is one of 16 contiguous entries

which point to a contiguous output address range. If set, the TLB

need cache only one translation for the group of 16 pages

– “privileged execute never” (PXN) is added. This marks a page as

containing code that can be executed only in a non-privileged

(user) mode

– supports virtualization
68

