ARM —L &

- ARM v7 SHOZ -

Memory-consistency models

« SMP (Symmetric Multiprocessor) System

— a multiprocessor computer hardware and software architecture
where two or more identical processors are connected to a

single shared main memory

System Bus

Cache Cache Cache /O
I I LI B

<&=X: Wikipedia>

Memory-consistency models

« Memory model

— What types of memory reordering to expect at runtime

relative to a given source code listing

WEAK STRONG
Really weak Weak with Usually strong Sequentially
data dependency implicit acquire consistent
order]ng release & TSO, usually
DEC Alpha ARM xB6/64 dual 386 (circa 1989)
— p—
C/C++11 PowerPC SPARC TSO Java volatile

low-level atomics
- C/C++11
ﬂﬁ default atomics
N =E-j v 1 O_r, run on
l’-‘g--'f . a single core
Source control without optimization

analogy

<& X: preshing on programming>

Memory-consistency models

Level of reordering

Source code Machine code

if (!PREACTIONIgm)) | =1 asi, 0Fdh
vald® men: 1L dimall +LAENR (7
size £t nb; g ail, 00k
§ o o=e2ih (77
ihiytaa <= !"'.’1.:(__,'-]".:-‘\:.: H e L5 4

1 - oy £51, 100

DAncsex © 1dx;

¥il[1imall t !
Dinmap ¢ fsmallbits: ol Ok
nb = (bytesd < HIN REC an esi, OFFITEFI
fedx amall index{nb}; By ca, dvord pEr |
smallbits gm=>amad lm i 1L,

compiler hr odi,3 processor
LE l'-':"llui|||.'l ta & OxJUY reorder]ng ‘:I.'Ir- =CN, el rEdeE'rlng

mchunkptyr b, p:

jdy 4= =gmallbits & " . 3 :
! - - R il . ¥ sas J 'I il a . II'l|| :-I-'

The hardware memory model matters here.

<ZX: preshing on programming>

Memory-consistency models

Weak Memory Models

— Any load or store operation can effectively be reordered with any other load
or store operation

— The reordering may be due to either compiler reordering of instructions, or
memory reordering on the processor

Weak With Data Dependency Ordering

— If you write A->B, it always guarantees to load a value of B after loading a
value of A,

Strong Memory Models

— When one CPU core performs a sequence of writes, every other CPU core
sees those values change in the same order that they were written.

Sequential Consistency

— There is no memory reordering

Exception

Exception?

« Any condition that needs to halt normal execution and
instead run software associated with each exception

type, known as an exception handler

« The unprivileged User mode can switch to another

mode only by generating an exception

Exception mode

Vector : Return
Exception Mode Event CPSR . .
address instruction
0x0 Reset Supervisor Reset input asserted F=1 Not applicable
I=1
0x4 Undefined Undefined Executing undefined I=1 MOVS PC, LR
instruction instruction (if emulating the

instruction)
SUBS PC, LR, #4
(if re-executing
after for example
enabling VFP)

0x8 Supervisor call Supervisor SVC instruction I=1 MOVS PC,LR

oxC Prefetch Abort Abort Instruction fetch from I=1 SUBS PC, LR, #4

invalid address
0x10 Data Abort Abort Data Read/Write to I=1 SUBS PC, LR, #8 (if
invalid address retry of the aborting

mnstruction 1s
wanted)

ox14 Yesa HYP Hypervisor entry - ERET

0x18 Interrupt IRQ IRQ input asserted I=1 SUBS PC, LR, #4

ox1C Fast Interrupt FIQ FIQ input asserted F=1 SUBS PC, LR, #4

ARM Exceptions Types

 Reset

— Occurs when the processor reset pin is asserted
 For signaling Power-up
 For resetting as if the processor has just powered up
— Software reset

« Can be done by branching to the reset vector (0x0000)

 Undefined instruction

— Occurs when the processor or coprocessors cannot recognize

the currently execution instruction

ARM Exceptions Types

« Software Interrupt (SWI)

— User-defined interrupt instruction

— Allow a program running in User mode to request privileged
operations that are in Supervisor mode

e Prefetch Abort

— Fetch an instruction from an illegal address, the instruction is
flagged as invalid

— However, instructions already in the pipeline continue to execute
until the invalid instruction is reached and then a Prefetch Abort
IS generated

ARM Exceptions Types

Data Abort
— A data transfer instruction attempts to load or store data at an illegal address

IRQ

— The processor external interrupt request pin is asserted and the I bit in the
CPSR is set

FIQ

— The processor external interrupt request pin is asserted and the I and F bit in
the CPSR are set

Breakpoint (BKPT)

— Similar to prefetch abort

— Prefetch abort occurs at Execute stage of the pipeline

Vector Table

« At the low or high of the memory map
— Low: 0x00000000
— High: OxFFFFO000

« Each entry has only 32 bit

— Not enough to contain the full code for a handler

— Branch instruction or load PC instruction to the actual handler

Vector Table

: Normal High vector
Excepliontype node address adgcllress
Reset Supervisor 0x00000000 OXFFFF0000
Undefined instructions Undefined 0x00000004 OXFFFF0004
Software interrupt (SWI) Supervisor 0x00000008 OXFFFF0008
Prefetch Abort (instruction fetch memory abort) Abort 0x0000000C OXFFFF000C
Data Abort (data access memory abort) Abort 0x00000010 OXFFFF0010
IRQ (interrupt) IRQ 0x00000018 OXFFFF0018
FIQ (fast interrupt) FIQ 0x0000001C OXFFFF001C

13

Exception priorities

Priority EXxception
Highest 1 Reset
2 Precise data abort
3 FIQ
4 1IRQ
5 Prefetch abort
6 Imprecise data abort
Lowest 7 BKPT
Undefined instruction
SvC

SMC

Exception handling

« Entering an exception handler (Hardware)
— The processor saves the current status and the return address
— Enters a specific mode
— Disables hardware interrupts
— Execution is then forced from a fixed memory address called an
exception vector
« Exit from an exception handler (Software)
— CPSR = SPSR_[exception_mode]
— PC = R14

SWI and Undefined Instruction

« SWI and undefined instruction exceptions are
generated by the instruction itself

— Ir_mode = pc + 4 //next instruction
« Restoring the program counter

— If not using stack: MOVS pc, Ir //pc = Ir

— If using stack to store the return address

« STMED sp!, {reglist, Ir} //when entering the handler

LDMEFD sp!, {reglist, pc}* //when leaving the handler

FIQ and IRQ

« FIQ and IRQ are generated only after the execution of
an instruction

« The program counter has been updated

| - FIQ or IRQ occurs
PC | |
P+,

e /rmode = PC + 4
— Point to one instruction beyond the end of the instruction in

which the exception occurred

17

FIQ and IRQ

« Restoring the program counter

— If not using stack: SUBS pc, Ir, #4 //pc = Ir-4

— If using stack to store the return address

« SUB Ir, Ir, #4 //when entering the handler
STMED sp!, {reglist, Ir}

LDMED sp!, {reglist, pc}” //when leaving the handler

Prefetch Abort

If the processor supports MMU (Memory Management Unit)

— The exception handler loads the unmapped instruction into

physical memory

— Then, uses the MMU to map the virtual memory location into the
physical one

The handler must return to retry the instruction that caused

the exception

The /r ABT points to the instruction at the address 7o/lowing
the one that caused the abort exception

Prefetch Abort

 The address to be restored i1s at /r ABT — 4
— If not using stack: SUBS pc,Ir#4

— If using stack to store the return address

« SUB IrIr#4 ;handler entry code
STMED sp!,{reglist,|r}

LDMED sp! {reglist,pc}” ; handler exit code

Data Abort

Ir_ABT points two instructions beyond the instruction
that caused the abort (Ir_mode = pc + 4)

— When a load or store instruction tries to access memory, the

program counter has been updated

— The instruction caused the data abort exception is at /r ABT - 8

The address to be restored is at /r ABT — 8

Data Abort

 The address to be restored is at /r ABT — 8
— If not using stack: SUBS pc,Ir,#8

— If using stack to store the return address

« SUB IrIr#8 ;handler entry code
STMED sp!,{reglist,|r}

LDMED sp! {reglist,pc}” ; handler exit code

Caches

Caches

* Pros
— Speed things up
« Cons
— program execution time can become non-deterministic

— lack coherence

— some extra work to manage

Cache types

 Level 1 (L1) caches

— connected directly to the processor logic

— Size: 16KB or 32KB

 Level 2 (L2) caches

— It can be inside the processor itself (Cortex-A8 and Al5) or be

implemented as an external block

— Size: 256KB, 512KB or 1MB

Cache terminology

« Line
— the smallest loadable unit of a cache, a block of contiguous

words from main memory

e Index

— the part of a memory address which determines in which

line(s) of the cache the address can be found
- lWay

— a subdivision of a cache, each way being of equal size and

indexed in the same fashion

Cache terminology

o« Set

— The line associated with a particular index value from each

cache way grouped together
o 7'39
— the part of a memory address stored within the cache which

identifies the main memory address associated with a line of

data

Cache terminology

Offset
Line = >
\ Data RAM Tag RAM
4 |_ { : : | 32-bit address
= i | | —
Index] I ! l — Tag Index Offset Byte

—l
I

28

« Direct mapped caches

Pros

— Simple

Cons

— Thrashing

Load

and

0x0000.
0x0000.
0x0000.
0x0000.
0x0000.
0x0000.
0x0000.
0x0000.
0x0000.
0x0000.

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090

evict repeatedly

Main memory

at the same cache line

Implementing caches

Cache

Lines (Index)

32-bit address

Tag |

Index Offset Byte

|

Data

Yy

Hit
29

Set associative caches

« To reduce thrashing problem

— Tag + set index + offset

0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0Ox0000
0x0000
0x0000
0x0000

.0000
.0010
.0020
.0030
.0040
.0050
.0060
.0070
.0080
.0090

Main memory

W RN S ER—) —_
e R e et | ol o

Cache way 0

Cache way 1

30

Set associative caches

A real-life example - 32KB 4-way set associative cache

Address

Tag

Set

:

l

Tag

Data line 0

Data line 1

Data line 2

Data line 3

Data line 254

Data line 255

31

Physical Cache vs. Logical Cache

|
Virtual | Physical
memory } Mmemory
|
Offset Address bus
|
|
|
Translation '
base
- T MMU
:
|
I Data bus
|
|
|
Processor : Main
Logical cache memory
!
] | _
Virtual [Physical
Memory : memory
|
|
Offset Addrc|55 bus
|
] |
Translation |
base
MMU +
| Cache
|
D‘.lt:.% bus
|
| -
Processor | Main
Physical cache memory

32

Virtual and physical tags and indexes

« Early ARM processors
— used virtual addresses to provide both the index and tag values

— +: the processor can do a cache look-up without the need for a virtual to
physical address translation

— -: changing the virtual to physical mappings in the system means that
the cache must first be cleaned and invalidated

« ARM11 family processors

— Index: Virtual address / Tag: Physical address
— Virtually Indexed, Physically Tagged (VIPT)
— +: Reduce cache clean and flush

— - During cache lookup, it should access MMU

Virtual and physical tags and indexes

» Cortex-A8 process

— a VIPT implementation in its instruction cache, but not its data

cache

« Recent Cortex-A series

— Physically Indexed, Physically Tagged (PIPT) cache

PIPT
(Physically indexed, physically tagged)

index®} tagd|| 25 physical address?t AF2 &, 7pEF ZHEHSE HEEH 0|10 physical address= |/ 2 }?I [-2 0
address aliasing2H| 7t i X|2t, physical address& ™ Gl ZostA €. 1 o|0|= TLBY| ?HD'DI Ll dld, TLB
missZF Braigt A0 &£ 7F HO{E. TLB miss?Z} *izt-ﬁ*m =} 81 El-E TLB lookup Z0f| Cache lookupZS
sequentialStA| O|F0{HOf & et FMHEHeZ =57} slc:rw

TLB hit PA PA .
»| Cache | Memory

Cache
miss w

TLE nhiss | Page Cache |
tables hit
PTE
data data

<& X: iamroot Kernel 6X} Members>
35

VIPT
(Virtually indexed, physically tagged)

index0j|= virtual address& ALE3}1 tagl|= physical address& Ar2%t PIPT CHH| low latency (physical address
£ =0 Zel= AlZhe] EH0| /IS, TLBE &3l cache lineZ parallel 5tH && 5 US. SHX| Bl physical
address& &2 M7M}X| tagE H| L2 == 2. A LISIH tag?} physical addressE AM25}27| I-20]. processor?}
£ 2 8l= Indexe virtual address0|7| W20 O|& physical address2 HZ 0| ZRSICH= 2|0 2. VIVT ChH| &H
2 tag”t physical addressO|7| I 20| cache?} aliasingE =2 &= 9. VIPTE= €719| tag bit?} & § Z Qo
Q| LISHH index bit?} 0|4 525t addressE HEGHA| &7 IHE QL.

VPN | offset |
|
- oA Memory
page # TLB Page Cache
fault /] —I_ tables m
me| | Te | PFN
hit miss
PTE
PFN

<& X: iamroot Kernel 6X} Members>

36

VIVT
(Virtually indexed, virtually tagged)

of 25 virtual address?f A8 El virtual address7t AFE E| 7| {20 physical addressE £H7] 2|8

index2} tag

MMUZ¢ FH?—*'E' d7t gls. obX|2h M 2LCHE virtual addresses?t &2 physical addressE 72| 7| = aliasing=2X|
7t giist 0| = physical addressof| H@[fe virtual address7} EacheEl [} 4HA4BL=T|, coherency problemS gt

YAIZ. 0I5 S, MRCHE A8t application0| St fileg mmap&t I AL Xt application?] virtual address
= HEL 2 thS'Cal address= ZtA|E. Ct2 22X F 2 2= V->P mapping (virtual to physical)o| BFE #= QIC}
= FHo|O4, 0|Z L TLB entry2] I:ﬂ:—'iGH ZFO|5l|0FSt 2 entryZt H1:'JE|;| X 0| 3ISt cache lineS < ﬂushmgoHUF St

2 LFEFH, virtual addressZF CiO|&F S5 6FA %7| 20,

<& X: iamroot Kernel 6X} Members>
37

Cache policies

 Allocation policy
« Replacement policy

« Write policy

Allocation policy

 read allocate

— allocates a cache line only on a read

— If a write is performed by the processor which misses in the
cache, the cache is not affected and the write goes to main

memory

e read-write cache allocate

— allocates a cache line for either a read or write which misses

In the cache

Replacement policy

« Round-robin or cyclic replacement

— Increment the victim counter by one

« Pseudo-random replacement

— randomly selects the next cache line in a set to replace

Write policy

« Write-through
— With this policy writes are performed to both the cache and

main memory

— the cache and main memory are kept coherent

 Write-back

— writes are performed only to the cache, and not to main

memory
— cache lines and main memory can contain different data

— a dirty line should be written to main memory before eviction

Write buffer

implemented using a number of FIFOs

The processor does not have to wait for the write to

be completed to main memory

increase the performance of the system

+ Caches

Processors DRAM

Write Buffer+

Invalidating cache memory

Invalidation of a cache (or cache line) means to clear it

of data

The cache always needs to be invalidated after reset

automatically except Cortex-A9 processor

write-back cacheable regions would be lost by simple

invalidation

Cleaning cache memory

« write the contents of dirty cache lines out to main

memory and clear the dirty bit(s) in the cache line

It is only applicable for data caches in which a write-

back policy is used

Self-moditying code

 Problem

— Some existing JIT-compiled code was generated at run-time to

load a function address into a register and then branch to it

— How to execute the modified code?

Memory Memory
movw ip, #:lowerlé:old tgt movw ip, #i:lowerle:old tgt
movt ip, #iupperle:old tgt movt ip, #:upperlé:old tgt
blx ip blx ip
3 3
h r A r
Instruction Cache Data Cache Instruction Cache Data Cache
movw ip, #:lowerl6:old tgt i movw ip, #:lowerlb:old tgt movw ip, #:lowerlf:inew tgt
movt ip, #:upperlb:old tgt movt ip, #:upperlé:old tgt movt ip, #:upperlé:inew tgt
blx ip blx ip blx ip
&
¥ ¥ Y r
Processor Core Processor Core

45

Self-moditying code

e Solution

— get data from the D-cache into the I-cache

— to push the data out to memory => clearing D-cache lines

— wait for the write to complete

Memory

movw ip, #:lowerlé:new tgt

movt ip,; #:upperlé:new tgt

blx ip
3
L r
Instruction Cache Data Cache
movw ip, #:ilowerl6iold tagt movw ip, #:lowerlfinew tgt
movt ip, #:upperlé:eld tgt movi ip, #:upperlé:new tgt
blix i blx ip

Processor Core

Self-moditying code

e Solution

— tell the processor that the contents of the I-cache are
invalidated and need to be re-loaded from memory

— The commands to clean and/or invalidate the cache are CP15
operations

Memory

movw ip, #:lowerlé:new tgt

movt ip, #:upperlé:new tgt

bix ip

k r

Instruction Cache Data Cache

movw ip, #:lowerl€:inew tgt

movt ip, #:upperlé:new tgt

Processor Core

47

Cache lockdown

the programmer to place critical code/or and data into

cache memory and protect it from eviction
For avoiding any cache miss penalty

Ex> code and data of a critical interrupt handler

Tightly Coupled Memory

An alternative to using cache lockdown (H/W approach)

a block of fast memory located next to the processor

core

Hold instructions or data required for real-time code

which needs deterministic behavior

However, TCM is not supported in Cortex-A series

Processors

Memory Management Unit

What for?

need a way to partition the memory map and assign
permissions and memory attributes to these regions of

memory
programming of applications much simpler

virtual address space is separate from the actual

physical map of memory in the system

translation of virtual addresses into physical addresses

Virtual and physical memory

Virtual Memory Map

Vectors page

Kernel

Heap

Dynamic libraries

Data

Zl data

Code

Physical Memory Map

Peripherals

ROM

RAM

52

Level 1 page tables

« The base address of the L1 page table is known as the
Translation Table Base Address and is held within a

register in CP15 ¢2

Translation Table Base Address Virtual Address
- ™, ' =
31 14 13 0 31 20 19 0
‘ Entry index

Base Address \

[]

31 14 13 2 10
. ¥
First Level Descriptor Address

53

Level 1 page table entry format

A fault entry that generates an abort exception
An entry that points to an L2 page table
A 1MB section translation entry

A 16MB supersection

Fault

Page table

Section

Supersection

Reserved

3130/29/28/27/26125 24 23/22/21 20119 18/17/16/115/1413 121110 9 &/7|6 /5 /43|21

lgnored

0

Level 2 Descriptor Base Address Domain SBZ |0
Section Base Address s [o]a]s]|z| TEX | AP Domain | [c[B] 1
Supersection n A ;
Base Address SBZ 1115 P TEX AP Domain C 1

54

Generating a physical address from a level
1 page table entry

Translation Table Base Address

r I
|| |
3 14 13 0
Virtual Address
-
I ||
31 20 19
I L
14 13 2 10
v

First Level Descriptor Address

L :

\ ola]

31
A
Section Base Address Descriptor
31 20 19 0
A v

Physical Address

55

Level 2 page tables

« L2 page table has 256 word-sized entries
— A fault page entry generates an abort exception if accessed
— A large page entry points to a 64KB page
— A small page entry points a 4KB page

31 30 29 28 27 26 25 242322 21,2019 18/17 16 1514 13 12/11/10/9 8|7 6|5 4 3 2

'_l

Fault lanored

X n A
N TEX G S| e SBZ AP | C| B
X

Large page Large Page Base Address

Small page Small Page Base Address alslf| TEX AP | C|B
X

Generating the address of the level 2 page
table entry

Coarse Page Base Address Virtual Address

31 ‘ 10 9 0 31 20 19 12 11 0

34, 10 9 2

[
LD

Second Level Descriptor Address

57

Summary of generation of physical address
using the L2 page table entry

Translation Table Base Address
-
| |
31 14 13 [
Wirtual Address
i bl
| /| || |
31 20 19 12 11 [i]
v | (]
31 14 13 2 10
Lewvad 1 W
Tabie Level 1 Descriptor Address
mlL N [—(c
31 o 9 2 10
3 Level 2 Table Base Address
1—
| I |[]
/31 10 9 2 10
Level 2 k=
Table Level 2 Descrptor Address
anl N [—
| 31 12 11 2 14
5 A
Small Page Base Address
l
12 11 [i]

Physic al Address

58

Translation Look-aside Buffer

 a cache of page translations within the MMU

« On a memory access, the MMU first checks whether

the translation is cached in the TLB

« TLB hit, and the TLB provides the translation of the

physical address immediately

TLB structure

Attributes: memory type, cache policies, access permissions

ASID value — Address Space ID

VA Tag ASID Descriptor

— o

VA
ASID

60

TLB operation

* There are several CP15 operations available

— It is essential to invalidate the TLB when a valid page table

entry is changed
— a global invalidate of the TLB

— removal of specific entries

« Support for locking individual entries into the TLB

Choice of page sizes

« Small-size page
— Smaller page sizes allow finer control of a block of memory and
potentially can reduce the amount of unused memory in a page
— Smaller page sizes also allow increased precision of control over
permissions
« Large-size page
— Each entry in the TLB holds a reference to a larger piece of
memory (increase TLB hit ratio)

— fewer page table walks to slow external memory

Memory attributes

« Memory Access Permissions

APX AP Privileged Unprivileged Description

0 00 Noaccess No access Permussion Fault

0 01 Read/Write No access Privileged Access only
0 10 Read/Write Read No user-mode write

0 11 Read/Write Read/Write Full access

1 00 - - Reserved

1 01 Read No access Privileged Read only

1 10 Read Read Read only

1 11 - - Reserved

Cache and Write Buffer Bit

C-bit Page property C-Bit B-Bit Page property
Not cached,
0 Not cached 0 0 Not buffered
Not Cached,
1 cached 0 1 Buffered
1 0 Cached,
Write-through
1 1 Cached,

Write-back

64

Domains

The ARM architecture has an unusual feature which enables
regions of memory to be tagged with a domain ID

There are 16 domain IDs provided by the hardware

CP15 c3 contains the Domain Access Control Register which holds
a set of 2-bit permissions for each domain number

Modes

— No-access

« an abort on any access to a page in this domain
— Manager

* ignores all page permissions and enables full access
— Client

« the permissions of the pages tagged with the domain

Address Space ID

If the nG bit is set for a particular page, it means that the page is

associated with a specific application and is not global

This means that when the MMU performs a translation, it uses
both the virtual address and an ASID value

The ASID is a number assigned by the OS to each individual task
This value is in the range

0-255 and the value for the current task is written in the ASID

register

ASIDs in TLB mapping same virtual
address

—————— Physical Memory Map
ASID
_____ J
TLB
Global
Global
Global BEED
c 0%000
A Dx 002 Task C
B 0x000
A 0x000 Task A

Features of Cortex-A15 MMU

« Large Physical Address Extensions (LPAE)

Address mapping for a 40-bit address space, 4GB -> 1024GB

A new page table entry format - the “long-descriptor format” is
added

This is set to show that the entry is one of 16 contiguous entries
which point to a contiguous output address range. If set, the TLB

need cache only one translation for the group of 16 pages

“privileged execute never” (PXN) is added. This marks a page as
containing code that can be executed only in a non-privileged

(user) mode

supports virtualization

