ARM —L &

- ARM v7 SHOZ -

<&EXN: Wikipedia>

CPU
Model number instruction
set
Exynos 3 Singlelw]
lously SAPCT10
{previously . ARMVT

Hummingbird, Exynos
3110011

Exynos 4 Dual 45 nmtc)

{previously Exynos 4210 | ARMT
13}

Exynos 4 Quad!'!

(Intemally Exynos 4412 ARMvT
[20]

Exynos & Duall®®!
{previously Exyrios 5250 | ARMvT

[ET_],

Exynos & Octal*a*]
41 (intemally Exynos
5410)

ARNMT

x|l SoC 5

CPU

0.8-1.2 GHz Single-core ARM
Cortex-AB

1.2-1.4 GHz Dual-core ARM
Cortex-A9

1.4-1.6 GHz Quad-core ARNM
Cortex-A9

1.7 GHz Dual-core ARM Cortex-
A5

1.6-1.8 GHz quad-core ARM

Cortex-A415 and 1.2 GHz quad-

jcore ARM Cortex-AT (ARM

big.LITTLE)F]

GPU

IT PowerVR 5GX540
at 200 MHz
(3.2 GFLOPS)[']

ARM Mali-400 MP4 (Quad-
Core) at 266 MHz
(9.6 GFLOPS)['4]

| ARM Mali-400 MP4 1]

(Quad-Core) at 440 MHz

(15.84 GFLOPS)!'?]

ARM Mali-T604 ¥ (Quad-
core) at 533 MHz
4x17Tx0533x2=
72 488 GFLOPS

| [citation needed]

IT PowerVR SGX544MP3
(Tri-Core) at 533 MHz

(51.2 GFLDPS}[E‘”?

« Apple — A series

CPU
NHame CPU GPU
154

|44 |ARMVT |0.8-1.0 GHz single-core Cortex-A8 | PowerVR SGX535 @ 200-250 MHz (1.6-2 GFLOPS)*!

PowerVR SGX543MP2 (dual-core) (@ 200 MHz * vec4 + 1

\AS |ARMVT |0.8-1.0 GHz dual-core Cortex-A9 o
scalar 4xZ+1=9*3x 0200 x 5 = 14.4 GFLOPS ™

PowerVR SGXS43MP3 (tri-core) @ 250 MHz *vecd + 1

A5 |ARMYTE |13 cHzY! dual St 4o as
e P scalar 4x2+1=0* 12 x 0.250 x 9 = 27GFLOPS[*!

<Z=XN: Wikipedia>

e Qualcomm - Snapdracon

Snapdragon S4 [edit]

CPU
Model| Model -)
Instruction GPU
Tier Humber
Set

Adreno 320

Pro [APQBOGS | apyy7
[45} (OXGA/1080p)

Snapdragon 600 [edit]

Model Model CPU Instruction
_ CPU GPU
Tier Number Set
1.7 Up To 1.9 GHz Quad- | Adreno 320
core Krait 300 (QXGAJ080p)

600 |APQS0B4T ARMyT

<ZEXN: Wikipedia>

CISC vs. RISC

. CISC
~ H/W o|=H
- M5 ANBE YiME & A4S Tefof
. RISC

- S/W 2|=X

- ds0] AL 0 25 28

oo

A

M

ARM Cortex — A/R/M

The Application profile defines an architecture aimed at high performance
processors, supporting a virtual memory system using a Memory Management
Unit (MMU) and therefore capable of running complex operating systems.
Support for the ARM and Thumb instruction sets is provided.

The Real-time profile defines an architecture aimed at systems that need
deterministic timing and low terrupt latency and which do not need support for
a virtual memory system and MMU, but instead use a simpler memory protection
unit (MPU).

The Microcontroller profile defines an architecture aimed at lower
cost/performance systems, where low-latency interrupt processing 1s vital. It uses
a different exception handling model to the other profiles and supports only a
variant of the Thumb instruction set.

Architecture and Family

Architecture Architecture Architecture Architecture ARMvV7-A
v4 | v4T v5 v6 v7 Cortex-A5
Cortex-A8
ARM7TDMI ARMO926EJ-S ARM1136J-S Cortex-A9
ARMO20T ARM946E-S ARM1176JZ-S
StrongARM XScale ARM1156T2-S ARMvV7-R
// > Cortex-R4
] ARMv7-M
/ Cortex-M3
ARMv6-M
Cortex-MO ARMvV7E-M
Cortex-M4

Halfword and signed

System mode

Thumb instruction
set

Features

5]

i Improved ARM/Thumb
halfword/byte support |

Interworking

i CLZ

Saturated arithmetic

DSP multiply-accumulate

i Instructions

Extensions:
Jazelle (v6TEJ)

¢

SIMD instructions
Multi-processing

v6 memory architecture

Unaligned data support ;

Extensions:
Thumb-2 (v6T2)
TrustZone (v6Z)

Multiprocessor (v6K) i

Thumb only (v6-M)

{ Thumb technology

NEON
TrustZone

Profiles:
v7-A (Applications)
NEON

v7-R (Real-time)
Hardware divide
NEON

v7-M (Microcontroller)
Hardware divide
Thumb only

ARM processor mode

Mode encoding

Mode in the PSRs Function

Supervisor 10011 Entered on reset or when a Supervisor Call mstruction (SVC) 1s executed
(SVCO)

FIQ 10001 Entered on a fast interrupt exception

IRQ 10010 Entered on a normal interrupt exception

Abort (ABT) 10111 Entered on a memory access violation

Undef (UND) 11011 Entered when an undefined instruction executed

System (SYS) 11111 Privileged mode. which uses the same registers as User mode

User (USR) 10000 Unprivileged mode in which most applications run

Register set

RO
R1
User User User User User User
R2 mode mode mode mode mode mode
R3 RO-R7, RO-R12, RO-R12, RO-R12, RO-R12, RO-R12,
R4 R15 R15 R15 R15 R15 R15
and and and and and and
R5 CPSR CPSR CPSR CPSR CPSR CPSR
R6
R7
R8 R8
R9 R9
R10 R10
R11 R11
R12 R12
R13 (SP) R13 (SP) R13 (SP) R13 (SP) R13 (SP) R13 (SP) R13 (SP)
R14 (LR) R14 (LR) R14 (LR) R14 (LR) R14 (LR) R14 (LR) R14 (LR)
R15 (PO)
CPSR
SPSR SPSR SPSR SPSR SPSR SPSR
User FIQ IRQ ABT SVC UND MON

10

Programmer Visible Registers

RO
R1
R2
R3
R4
RS

Low Registers

General Purpose
R6 Registers

R7

R8

R9
R10
R11
R12

High Registers

R13 (SP)| Stack pointer
R14 (LR)| Link register
R15 (PC)| Program Counter

CPSR Current Program Status Register

Register Set

Visible register set

— Registers that are visible during specific mode
— 16x32bit registers are visible at any mode

— Some registers are shared, some are not

Banked register

— Registers that share the same index

— Only 1 of banked registers are visible at each mode
— R13(SP) and R14(LR) are banked

— FIQ has 5 additional banked registers
Register dump overhead is reduced at context switch

Banked Register

» Processor mode0j| 2} C}-Z instance”} accessk|=

register .+ =

R13_USER =\
R13_SVC >
= > R13
R13_ABORT >
R13_UNDEF > s

|

Selector=CPSR

Special Registers

R13, Stack pointer

— Used when stack are implemented

— Used when context switch occurs

— Stores the stack pointer value of tasks

R14, Link Register
— Used when mode change with return occurs
— Stores the return address (current PC)

R15, Program Counter
— Used to store current instruction address
— A write to R15 is equivalent to branch instruction

CPSR — ARMv4

Flag bits — instruction’s result

— N: Negative; the last ALU operation which changed the flags

produced a negative result

— Z: Zero; the last ALU operation which changed the flags produced a

zero result
— C: Carry; the last ALU operation which changed the flags generated a
carry-out,
— V: oVerflow; 3 2827 8765 4 i
NZCV unused |F |T| mode

Control bits — cpu operating mode
— Processor mode[0-4]

— Instruction set: Thumb mode

— Interrupt enables (I: IRQ, F: FIQ)

31 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5

CPSR — ARMv/

NZCVAQ

IT
[1:0]

]

Reserved| |GE[3:0] IT[7:2] EI[ALITIIFLT

M[4:0]

N — Negative result from ALU

Z — Zero result from ALU

C — ALU operation Carry out

V' — ALU operation oVerflowed

() — cumulative saturation (also described as “sticky™)
J— indicates if processor is in Jazelle state

GE[3:0] — used by some SIMD instructions

IT[7:2] - If-Then conditional execution of Thumb-2 instruction groups
E bt controls load/store endianness

A bit disables imprecise data aborts

I bit disables IRQ

F bit disables FIQ

T bit - T = | indicates processor in Thumb state

M[4:0] - specifies the processor mode

16

Jazelle DBX (Direct Bytecode eXecution)

« Execute Java bytecode in hardware as a third execution

state alongside the existing ARM and Thumb modes

Instruction Pipeline

|
|
|
ARM !
|
|
|

Insiruction | e W h : Execute

Stream Thumb V i Unit

|
— |
|
I
| |
i Jazelle !
I

i i e

Ferch Stage Diecnde Stage Execute Stage

17

Jazelle RCT (Runtime Compilation Target)

« A different technology and is based on ThumbEE mode and
supports ahead-of-time (AOT) and just-in-time (JIT) compilation
with Java

« Set modes
— 2-bit: J, T at CPSR
J TISA
0 0 ARM
0 1 Thumb
1 0 Jazelle
1 1 ThumbEE

Execute Java Byte Code

 Directly executed in Hardware

— 95% of all bytecode instructions
— Common, simple JVM instructions

— Reduces number of interpretations

 Interpreted in Software

— JVM instructions not implemented in Hardware

— Interpreted into short sequence of optimized ARM instructions

Instruction Fetch

Pi pel i n e "‘S“M ;Efﬂ'm Decode | Execute %?/f///j
Instruction 2 %f% Feleh | pecode | Execute /%

//f'}f’/// -

/:/f

Instruction 3 ;%/r/(/‘,x/ ,n;iﬁ;m Decode | Execute
—>

Clock cycles

Instruction prefetch (deciding from which locations in memory instructions are to be
tetched, and performing associated bus accesses).

Instruction fetch (reading instructions to be executed from the memory system).

Instruction decode (working out what instruction is to be executed and generating
appropriate control signals for the datapaths).

Register fetch (providing the correct register values to act upon).
Issue (i1ssuing the instruction to the appropriate execute unit).
Execute (the actual ALU or multiplier operation, for example).
Memory access (performing data loads or stores).

Register write-back (updating processor registers with the results).

Execute

Key:

Ifetch necudeW Write

=
o b
k= = =
. — Pp—— g U g -
2 73 g
il .
—_——— e Eened T T
z = =
-] L 2
. M m | W
SUGH INISUL JAISEIING

Pipeline vs.

Superpipelined vs.

Superscalar

8

?‘
Time in base cycles

6

Limitations

Instruction level parallelism
Compiler based optimisation
Hardware techniques

Limited by
— True data dependency
— Procedural dependency

— Resource conflicts

True Data Dependency

ADD rl, r2 (rl := r1+r2))
MOVE r3,r1 (r3 := rl)

Can fetch and decode second instruction in parallel wit
h first

Can NOT execute second instruction until first is finish
ed

Procedural Dependency

Can not execute instructions after a branch in parallel wi

th instructions before a branch

Also, if instruction length is not fixed, instructions have t

o be decoded to find out how many fetches are needed

This prevents simultaneous fetches

Resource Conflict

« Two or more instructions requiring access to the same
resource at the same time

— e.g. two arithmetic instructions

« (Can duplicate resources

— e.g. have two arithmetic units

Key: Execute

Ifetch | Decode Wrile
Effect of R
I 1 I I

] I I I I I

. il 1 I ' 1 I

e p e n e n C I e S I 1 No Dependency | I

il m [I [[I

1 1 1 1 I

| | | | | | | | |

| | | | | | | | |

| | 1 | 1 | | 1 |

1 1 1 1 I

il W 1 | | 1 |

: :I}ulﬂ Dependency '
il M (il uses data computer by i)

| | | | | | | | |

| 1 | | | | | | |

| | | | | | | 1 |

1 1 [I 1 1 1 1 I

P | | | | |

i [I ' . I

I i Procedural Dependency

ilfhranch W I I l I I

1 |

i [1 [[

| | 1 |

i3 | 1 [[

| | |

id I 1 I I

| | | |

is 1 1 I I

| | | |

| | | | | |

I 1 I 1 1 [

| | | | | |

1 |

i0 ! '

: Resource Conflict :

il m 1(i0 and il use the same |

Iy o L P |

Y | | i | : Ilum,tmna] uml,‘lI)'I

0 1 2 3 4 5 b T 8 9

Time in base cycles

In-Order Execution

Issue instructions in the order they occur
Not very efficient
May fetch >1 instruction

Instructions must stall if necessary

Out-of-Order Execution

« Qutput dependency
— R3:= R3 + R5; (I1)
— R4:=R3 +1; (I2)
— R3:=R5 + 1; (I3)
— [2 depends on result of I1 - data dependency

— If I3 completes before 11, the result from I1 will be

wrong - output (write-write) dependency

Out-of-Order Execution

Decouple decode pipeline from execution pipeline

Can continue to fetch and decode until this pipeline is
full

When a functional unit becomes available

an instruction can be executed

Since instructions have been decoded, processor can

look ahead

Superscalar Execution

instruction instruction
dispatch issue

K instruction instruction
/ ! execution reorder and

instruction fetch
and branch

static prediction
program

—
I
I
| commit
¥
I
—
I
I
I

window of
execution

Superscalar Implementation

Simultaneously fetch multiple instructions

Logic to determine true dependencies involving register val

ues

Mechanisms to communicate these values

Mechanisms to initiate multiple instructions in parallel
Resources for parallel execution of multiple instructions

Mechanisms for committing process state in correct order

RISC - Delayed Branch

Calculate result of branch before unusable instructions
pre-fetched

Always execute single instruction immediately following
branch

Keeps pipeline full while fetching new instruction stream

Not as good for superscalar
— Multiple instructions need to execute in delay slot

— Instruction dependence problems

Revert to branch prediction

Branch prediction

« Static branch prediction
— the simplest branch prediction method
— backward branches will be taken, and forward branches will not
— reasonable prediction accuracy in loops
« Dynamic prediction
— making use of history information about whether conditional
branches were taken or not taken on previous execution
— Branch Target Buffer (BTB) - 512 entries

— Global History Buffer (GHB) - the strength and direction
information about all of the recent branches.

ARM CORTEX-AS8

ARM refers to Cortex-A8 as application processors
Embedded processor running complex operating
system

— Wireless, consumer and imaging applications

— Mobile phones, set-top boxes, gaming consoles automotive
navigation/entertainment systems

Three functional units
Dual, in-order-execution, 13-stage pipeline
— Keep power required to a minimum

— Out-of-order execution needs extra logic consuming extra
power

Separate SIMD (single-instruction-multiple-data) unit
— 10-stage pipeline

13-stage integer pipeline

__A—_
~ Sy
2 stages 5 stages 6 stages
Branch mispredict |
Instruction execute and Load/Store
lREf-ﬂEY Esm.lction reqister writeback
Instruction fetch Instruction decode ALU plpe
L1 = MUL pipe 0 L1
3 Prefetch | —p |52 pipe
"0 | "ina |7 pecoe floepmdeney 1 5 B2 M e
nterface check an 2 g nterface
RAM branch - sequencer i M 9.1 ALU pipe 1 RAM
prediction = e ore
TLB plpe0or 1 TLB
I Tl | |
L2 MEQON unit MNEON register writeback
cache| Instruction,data, NEON and preload]
englne buffers & | Integer ALU pipe |
o ot
L2 cache ' Integer MUL pipe
Arbitration pipeline control NEON [T] & > | l
Instruction 9 | Ingeger shift pipe |
> | decode M =
Fill and eviction é | non-IEEE FP ADD pipe |
it L2 cache | | L2cache M| nondEEEFPMULpipe |
data RAM tag RAM
Bus Write 9 | IEEE floating-point engine |
Interface buffor Load and store
unit (BIU) data queus — | Load/store permute plpe |
3 stages 1 stage 6 stages
- ~ -

10-stage SIMD pipeline

Instruction Fetch Unit

Predicts instruction stream

Fetches instructions from the L1 instruction
cache

— Up to four instructions per cycle
Into buffer for decode pipeline
Fetch unit includes L1 instruction cache
Speculative instruction fetches

Branch or exceptional instruction cause pipeline
flush

F1 F2

branch
mispredict

Instruction Fetch Unit e o
Stages: [= e
FO address generation unit generates ate
virtual address _

— Normally next sequentially

— Can also be branch target address

F1 Used to fetch instructions from L1 instruction cache

— In parallel fetch address used to access branch prediction arra
yS

F3 Instruction data are placed in instruction queue

— If branch prediction, new target address sent to address gener
ation unit

Two-level global history branch predictor
— Branch Target Buffer (BTB) and Global History Buffer (GHB)

Return stack to predict subroutine return addresses
Can fetch and queue up to 12 instructions
[ssues Instructions two at a time

(a) Instruction fetch pipeline

Instruction Decode Unit

Decodes and sequences all instructions

Dual pipeline structure, p/ipe0 and pipel
— Two instructions can progress at a time
— Pipe0 contains older instruction in program order

— If instruction in pipe0 cannot issue, pipel will not issue
Instructions progress in order

Results written back to register file at end of execution pipeline
— Prevents WAR hazards

— Keeps tracking of WAW hazards and recovery from flush conditions
straightforward

— Main concern of decode pipeline is prevention of RAW hazards

Do D1 D2 D3 D4

Instruction Processing -
S _'deadz _'D?::;‘e Dee Final
tages et o
| decode| [Decoder* Wite I ol
. . I
* DO Thumb instructions decompressed peng

and preliminary decode is performed

(b) Instruction decode pipeline

« D1 Instruction decode is completed
« D2 Write instruction to and read instructions from
pending/replay queue

« D3 Contains the instruction scheduling logic
— Scoreboard predicts register availability using static scheduling

— Hazard checking

« D4 Final decode for control signals for integer execute load/store
units

branch

Integer Execution Unit

E0 E1 E2 E3 TE4T E5

> | Shift [—» ALU | SAT [— BP [—» WB ALU/

multiply

MUL MUL MUL ipe 0
- 1 P o2 P 3 ACC | WB iig

« Two symmetric (ALU) pipelines, ww

an address generator ,
for load and store instructions,
and multiply pipeline

 Pipeline stages: .
« EO Access register file

— Up to six registers for two instructions
E1 Barrel shifter if needed.

E2 ALU function

E3 If needed, completes saturation arithmetic

E4 Change in control flow prioritized and processed
ES Results written back to register file

Architectural register file

« Multiply unit instructions routed to pipe0
— Performed in stages E1 through E3
— Multiply accumulate operation in E4

Load/store pipeline

Parallel to integer pipeline

E1 Memory address generated from base and index register
E2 address applied to cache arrays

E3 load, data returned and formatted

E3 store, data are formatted and ready to be written

to cache
E4 Updates L2 cache, if required

ES Results are written to register file

F1 F2 Do D1 D2 D3 D4
branch
mispredict replay
'__;"1' RAM 12 [d ‘ L
:AGU i B B _,| Early _'_DECO = Dec | | >core | |
: ! TLB S | & decode > /seq queue board Final
_____ 4 —> qfﬁ‘::uhe | L read/ o+ decode
Early it issue
—hdecode_.hnemde " logic il
BTB <
Ly GHB]
i Pending and
replay queue
(a) Instruction fetch pipeline (b) Instruction decode pipeline
branch
mispredict replay
EO E1 E2 E3 TE"-}T E5
—»! | Shift ALU (—» SAT (—» BP [—» WB ALY/
& multiply
= MUL MUL MUL pipe 0
wsto | & | 5 ACC |—» WB
‘™
E
g —
S
<

Instruction Sets

Instruction Sets

« ARM (32-bit instructions)

— the original ARM instruction set

e Thumb

— only 16-bit instructions

— For building much smaller programs

« Thumb-2 technology
— a mix of 16-bit and 32-bit instructions

— performance similar to that of ARM, with code size similar to that of
Thumb

— Do not need to mode switching between ARM and Thumb

— 16-bit versions being generated by default

Interworking between ARM state and
Thumb state

ARM and Thumb code can be mixed, if the code
conforms to the requirements of the ARM and Thumb

Procedure Call Standards
T bitis1l == Thumb state / T bitis 0 == ARM

when the T bit is modified, it is also necessary to flush

the instruction pipeline

To avoid problems with instructions being decoded in

one state and then executed in another

Procedure Call Standard

« Argument registers
RO-R3 (al-a4)

 (Callee-saved registers
R4-R8, R10/R11

« Register which have

a dedicated role

RO al argument 1/scratch register/result

R1 a2 argument 2/scratch register/result

R2 a3 argument 3/scratch register/result

R3 ad argument 4/scratch register/result

R4 vl register variable

R5 v2 register variable

R6 v3 register variable

R7 vd register variable

E38 V5 register variable

R9 tr/sb/ve static base/ register variable

R10 sliv7 stack limit/stack chunk handle/register variable
R11 FP/v8 frame pointer/register variable

R12 IP scratch register/new -sb in inter-link-unit calls
R13 SP Lower end of the current stack frame

R14 LR link register/scratch register

R15 PC program counter

Efficient parameter passing

Foo1 (int i0, double d, int i1) Stack
L | ——
i0 :Unusedl d d i1 |Unused
| I —_——
FooZ2 (int i0, int i1, double d) Stack
i0 i1 d d

 Fool

— 8-byte argument (double d) must be passed in an even and

consecutive odd register

— 8-byte aligned the stack

e FoO2

— More efficient than Foo2

49

Register Set — Thumb mode

THUMB State General Registers and Program Counter

k= banked register

System & User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 RS R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
SP SP_fiq SP_sve SP_abt SP_und SP_fiq
LR LR_fiq LR _sve LR_ant LR_und LR_fiq
PC PC PC PC PC PC
THUMB State Program Status Registers
CPSR CPSR CPSR CPSR CPSR CPSR
L§Psn_sq kSPSR_wc kspsa_.u kSPSR_rq SPSR_und

Thumb 16-bit Instructions

o 32-bit ARM instruction set?| 2r=d
- 2|8 OZ2| AO|YA O R BHE=S 7L

- ZE 2§ 0Ot

e A Thumb enabled ARM
— 32-bit ARMI} 16-bit Thumb instructionsS Z0| At
— ARM and Thumb code AIO|O|A At O|O|H ==

— branch with exchange (BX) instructiong S3|| AE{ H3}

e Instruction@F0| 16-bitO|LC}.

Thumb Benefits

Ifi{x ==0)
C Source S return x; L
Code =1f=1=
return -x;
labs CMP o or0 #0 jiabs CMP 0 #0
RSBLT r0, r0, #0 BGE return
e MOV pe, I NEG 1D, r(
return MOW pc, lr
Code Instruction | Size (Bytes) | Mormalized
Comparison ARM 3 e 1.0
Thurmb 4 g 067

51

Thumb Benefits - continued

« Thumb programs typically are:
— ~30% smaller than ARM programs

— ~30% faster when accessing 16-bit memory

« Thumb reduces 32-bit system to 16-bit cost:
— Consumes less power

— Requires less external memory

Memory Instructions

« LDR (Load Register)
— LDR Rd, [Rn, Op2]

« STR (Store Register)
— STR Rd, [Rn, Op2]

« Size

— B for Byte / H for Halfword (16bits) /
D for doubleword (64 bits)

Addressing modes

Register addressing: (1)
Pre-indexed addressing: (2), (3)
Pre-indexed with write-back: (4)

Post-index with write-back: (5)

LDR RO, [R1] @ address pointed to by R1

LDR. RO, [R1, R2] @ address pointed to by R1 + RZ2

LDR RO, [R1, R2, LSL #2] @ address 1s R1 + (R2+4)

LDR. RO, [R1, #32]! @ address pointed to by R1 + 32, then R1:=R1 + 32

LDR RO, [R1], #32 @ read RO from address pointed to by R1, then R1:=R1 + 32

Register addressing

. Ex) r0 = 0x00000000
r1 = 0x00009000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

LDR RO, [R1]

« RO = 0x01010101
« R1 = 0x00009000

Pre-indexed addressing

. Ex) r0 = 0x00000000
r1 = 0x00009000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

LDR 1O, [rl, #4]

* RO = 0x02020202
« R1 = 0x00009000

Pre-indexed with write-back

. Ex) r0 = 0x00000000
r1 = 0x00009000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

DR 10, [rl, #4]!

* RO = 0x02020202
« R1 = 0x00009004

Post-index with write-back

. Ex) r0 = 0x00000000
r1 = 0x00009000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

DR 10, [r1], #4

« RO = 0x01010101
« R1 = 0x00009004

Multiple transters

« LDM / STM

[IA

Increment after Rn Rn+4*N- Rn+4*N

4
IB Increment before Rn + 4 Rn+4*N Rhn+4*N
DA Decrement after Rn-4 *N+4 Rn Rn-4*N

DB Decremtn before Rn -4 * N Rn -4 Rn-4*N

59

 LDMIA
— Ex)

— Results

Multiple transfers

r0 = 0x00080010
rl = 0x00000000
r2 = 0x00000000
r3 = 0x00000000
mem32[0x80018] = 0x03
mem32[0x80014] = Ox02
mem32[0x80010] = Ox01

LDMIA rO!, {r1 - r3}

r0 = 0x0008001c
r1 = Ox00000001
r2 = 0x00000002
r3 = 0x00000003

60

Multiple transfers

« LDMIA - start

Address pointer ~ Memory address Data
0x80020 0x00000005
0x8001c¢ 0x00000004
0x80018 O0x00000003 | RrR3 = 0x00000000
0x80014 0x00000002 | rR2 = 0x00000000
RO = 0x80010 ——> | 0x80010 0x00000001 | R1 = 0x00000000
0x8000c¢ 0x00000000

Multiple transfers

 LDMIA - end
Address pointer ~ Memory address Data

0x80020 0x00000005

RO = 0x8001c —— | Ox8001c¢ 0x00000004
0x80018 O0x00000003 | r3 = 0x00000003
0x80014 0x00000002 | rR2 = 0x00000002
0x80010 0x00000001 | R1 = 0x00000001
0x8000c¢ 0x00000000

« LDMIB
— Ex)

— Results

Multiple transfers

r0 = 0x00080010
rl = Ox00000000
r2 = 0x00000000
r3 = 0x00000000
mem32[0x80018] = 0x03
mem32[0x80014] = 0x02
mem32[0x80010] = 0x01

LDMIB r0O!, {r1 - r3}

r0 = Ox0008001c
rl = Ox00000002
r2 = 0x00000003
r3 = 0x00000004

63

Multiple transfers

« LDMIB - start

Address pointer ~ Memory address Data
0x80020 0x00000005
0x8001c¢ 0x00000004
0x80018 O0x00000003 | RrR3 = 0x00000000
0x80014 0x00000002 | rR2 = 0x00000000
RO = 0x80010 ——> | 0x80010 0x00000001 | R1 = 0x00000000
0x8000c¢ 0x00000000

Multiple transfers

« LDMIB - end

Address pointer ~ Memory address Data
0x80020 0x00000005
RO = 0x8001c —— | Ox8001c 0x00000004
0x80018 Ox00000003 | r3 = 0x00000004
0x80014 0x00000002 | r2 = 0x00000003
0x80010 0x00000001 | R1 = 0x00000002
0x8000c¢ 0x00000000

« Matching

Multiple transters

STM LDM
STMIA LDMDB
STMIB LDMDA

STMDA LDMIB

STMDB LDMIA

66

Multiple transfers

- LDM

— Syntax
LDM{addr_mode}{cond} Rn{!},reglist{A}

— 1if present, specifies that the final address is written back into Rn

— A (in a mode other than User or System) means one of two

possible special actions
 data is transferred into the User mode registers instead of the
current mode registers (without PC)

« the normal multiple register transfer happens and the SPSR is copied
into the CPSR (with PC)

