
ARM 구조
- ARM v7 중심으로 -

민 홍

1

최근 SoC 동향

• 삼성 – Exynos

<출처: Wikipedia>

2

최근 SoC 동향

• Apple – A series

<출처: Wikipedia> 3

최근 SoC 동향

• Qualcomm - Snapdracon

<출처: Wikipedia>
4

CISC vs. RISC

• CISC

– H/W 의존적

– 성능 최적화를 위해서는 칩 설계를 잘해야 함

• RISC

– S/W 의존적

– 성능이 컴파일러에 의해 결정

5

ARM Cortex – A/R/M

6

Architecture and Family

7

Features

8

ARM processor mode

9

Register set

10

Programmer Visible Registers

11

12

Register Set

• Visible register set
– Registers that are visible during specific mode
– 16x32bit registers are visible at any mode
– Some registers are shared, some are not

• Banked register
– Registers that share the same index
– Only 1 of banked registers are visible at each mode
– R13(SP) and R14(LR) are banked
– FIQ has 5 additional banked registers

• Register dump overhead is reduced at context switch

13

Banked Register

• Processor mode에 따라 다른 instance가 access되는

register 구조

R13_USER

R13_SVC

R13_ABORT

R13_UNDEF

R13

Selector=CPSR

14

Special Registers

• R13, Stack pointer
– Used when stack are implemented
– Used when context switch occurs
– Stores the stack pointer value of tasks

• R14, Link Register
– Used when mode change with return occurs
– Stores the return address (current PC)

• R15, Program Counter
– Used to store current instruction address
– A write to R15 is equivalent to branch instruction

15

CPSR – ARMv4

• Flag bits – instruction’s result
– N: Negative; the last ALU operation which changed the flags

produced a negative result
– Z: Zero; the last ALU operation which changed the flags produced a

zero result
– C: Carry; the last ALU operation which changed the flags generated a

carry-out,
– V: oVerflow;

• Control bits – cpu operating mode
– Processor mode[0-4]
– Instruction set: Thumb mode
– Interrupt enables (I: IRQ, F: FIQ)

CPSR – ARMv7

16

Jazelle DBX (Direct Bytecode eXecution)

• Execute Java bytecode in hardware as a third execution

state alongside the existing ARM and Thumb modes

17

Jazelle RCT (Runtime Compilation Target)

• A different technology and is based on ThumbEE mode and

supports ahead-of-time (AOT) and just-in-time (JIT) compilation

with Java

• Set modes

– 2-bit: J, T at CPSR

J T ISA

0 0 ARM

0 1 Thumb

1 0 Jazelle

1 1 ThumbEE

18

Execute Java Byte Code

• Directly executed in Hardware

– 95% of all bytecode instructions

– Common, simple JVM instructions

– Reduces number of interpretations

• Interpreted in Software

– JVM instructions not implemented in Hardware

– Interpreted into short sequence of optimized ARM instructions

19

Instruction Fetch

20

Pipeline

21

Pipeline vs.
Superpipelined vs.
Superscalar

Limitations

• Instruction level parallelism

• Compiler based optimisation

• Hardware techniques

• Limited by

– True data dependency

– Procedural dependency

– Resource conflicts

True Data Dependency

• ADD r1, r2 (r1 := r1+r2;)

• MOVE r3,r1 (r3 := r1;)

• Can fetch and decode second instruction in parallel wit

h first

• Can NOT execute second instruction until first is finish

ed

Procedural Dependency

• Can not execute instructions after a branch in parallel wi

th instructions before a branch

• Also, if instruction length is not fixed, instructions have t

o be decoded to find out how many fetches are needed

• This prevents simultaneous fetches

Resource Conflict

• Two or more instructions requiring access to the same

resource at the same time

– e.g. two arithmetic instructions

• Can duplicate resources

– e.g. have two arithmetic units

Effect of
Dependencies

In-Order Execution

• Issue instructions in the order they occur

• Not very efficient

• May fetch >1 instruction

• Instructions must stall if necessary

Out-of-Order Execution

• Output dependency

– R3:= R3 + R5; (I1)

– R4:= R3 + 1; (I2)

– R3:= R5 + 1; (I3)

– I2 depends on result of I1 - data dependency

– If I3 completes before I1, the result from I1 will be

wrong - output (write-write) dependency

Out-of-Order Execution

• Decouple decode pipeline from execution pipeline

• Can continue to fetch and decode until this pipeline is

full

• When a functional unit becomes available

an instruction can be executed

• Since instructions have been decoded, processor can

look ahead

Superscalar Execution

Superscalar Implementation

• Simultaneously fetch multiple instructions

• Logic to determine true dependencies involving register val

ues

• Mechanisms to communicate these values

• Mechanisms to initiate multiple instructions in parallel

• Resources for parallel execution of multiple instructions

• Mechanisms for committing process state in correct order

RISC - Delayed Branch

• Calculate result of branch before unusable instructions

pre-fetched

• Always execute single instruction immediately following

branch

• Keeps pipeline full while fetching new instruction stream

• Not as good for superscalar

– Multiple instructions need to execute in delay slot

– Instruction dependence problems

• Revert to branch prediction

Branch prediction

• Static branch prediction

– the simplest branch prediction method

– backward branches will be taken, and forward branches will not

– reasonable prediction accuracy in loops

• Dynamic prediction

– making use of history information about whether conditional

branches were taken or not taken on previous execution

– Branch Target Buffer (BTB) - 512 entries

– Global History Buffer (GHB) - the strength and direction

information about all of the recent branches.

ARM CORTEX-A8

• ARM refers to Cortex-A8 as application processors
• Embedded processor running complex operating

system
– Wireless, consumer and imaging applications
– Mobile phones, set-top boxes, gaming consoles automotive

navigation/entertainment systems
• Three functional units
• Dual, in-order-execution, 13-stage pipeline

– Keep power required to a minimum
– Out-of-order execution needs extra logic consuming extra

power
• Separate SIMD (single-instruction-multiple-data) unit

– 10-stage pipeline

ARM
Cortex-A8

Block
Diagram

Instruction Fetch Unit

• Predicts instruction stream
• Fetches instructions from the L1 instruction

cache
– Up to four instructions per cycle

• Into buffer for decode pipeline
• Fetch unit includes L1 instruction cache
• Speculative instruction fetches
• Branch or exceptional instruction cause pipeline

flush

Instruction Fetch Unit
• Stages:
• F0 address generation unit generates

virtual address
– Normally next sequentially
– Can also be branch target address

• F1 Used to fetch instructions from L1 instruction cache
– In parallel fetch address used to access branch prediction arra

ys
• F3 Instruction data are placed in instruction queue

– If branch prediction, new target address sent to address gener
ation unit

• Two-level global history branch predictor
– Branch Target Buffer (BTB) and Global History Buffer (GHB)

• Return stack to predict subroutine return addresses
• Can fetch and queue up to 12 instructions
• Issues instructions two at a time

Instruction Decode Unit

• Decodes and sequences all instructions

• Dual pipeline structure, pipe0 and pipe1

– Two instructions can progress at a time

– Pipe0 contains older instruction in program order

– If instruction in pipe0 cannot issue, pipe1 will not issue

• Instructions progress in order

• Results written back to register file at end of execution pipeline

– Prevents WAR hazards

– Keeps tracking of WAW hazards and recovery from flush conditions

straightforward

– Main concern of decode pipeline is prevention of RAW hazards

Instruction Processing
Stages

• D0 Thumb instructions decompressed

and preliminary decode is performed

• D1 Instruction decode is completed

• D2 Write instruction to and read instructions from

pending/replay queue

• D3 Contains the instruction scheduling logic

– Scoreboard predicts register availability using static scheduling

– Hazard checking

• D4 Final decode for control signals for integer execute load/store

units

Integer Execution Unit

• Two symmetric (ALU) pipelines,
an address generator
for load and store instructions,

and multiply pipeline
• Pipeline stages:
• E0 Access register file

– Up to six registers for two instructions
• E1 Barrel shifter if needed.
• E2 ALU function
• E3 If needed, completes saturation arithmetic
• E4 Change in control flow prioritized and processed
• E5 Results written back to register file

• Multiply unit instructions routed to pipe0
– Performed in stages E1 through E3
– Multiply accumulate operation in E4

Load/store pipeline

• Parallel to integer pipeline

• E1 Memory address generated from base and index register

• E2 address applied to cache arrays

• E3 load, data returned and formatted

• E3 store, data are formatted and ready to be written

to cache

• E4 Updates L2 cache, if required

• E5 Results are written to register file

ARM
Cortex-A8
Integer
Pipeline

Instruction Sets

44

Instruction Sets

• ARM (32-bit instructions)

– the original ARM instruction set

• Thumb

– only 16-bit instructions

– For building much smaller programs

• Thumb-2 technology

– a mix of 16-bit and 32-bit instructions

– performance similar to that of ARM, with code size similar to that of

Thumb

– Do not need to mode switching between ARM and Thumb

– 16-bit versions being generated by default

45

Interworking between ARM state and
Thumb state

• ARM and Thumb code can be mixed, if the code

conforms to the requirements of the ARM and Thumb

Procedure Call Standards

• T bit is 1 == Thumb state / T bit is 0 == ARM

• when the T bit is modified, it is also necessary to flush

the instruction pipeline

• To avoid problems with instructions being decoded in

one state and then executed in another

46

Procedure Call Standard

• Argument registers

R0-R3 (a1-a4)

• Callee-saved registers

R4-R8, R10/R11

• Register which have

a dedicated role

47

Efficient parameter passing

• Foo1

– 8-byte argument (double d) must be passed in an even and

consecutive odd register

– 8-byte aligned the stack

• Foo2

– More efficient than Foo2

48

49

Register Set – Thumb mode

50

Thumb 16-bit Instructions

• 32-bit ARM instruction set의 압축형

– 외부 메모리 사이에서 더 낮은 밴드폭을 가진다.

– 코드 밀도를 높인다.

• A Thumb enabled ARM

– 32-bit ARM과 16-bit Thumb instructions을 같이 사용

– ARM and Thumb code 사이에서 상호 데이터 교환가능

– branch with exchange (BX) instruction을 통해 상태 변화

• Instruction만이 16-bit이다.

51

Thumb Benefits

52

Thumb Benefits - continued

• Thumb programs typically are:

– ~30% smaller than ARM programs

– ~30% faster when accessing 16-bit memory

• Thumb reduces 32-bit system to 16-bit cost:

– Consumes less power

– Requires less external memory

Memory instructions

• LDR (Load Register)

– LDR Rd, [Rn, Op2]

• STR (Store Register)

– STR Rd, [Rn, Op2]

• Size

– B for Byte / H for Halfword (16bits) /

D for doubleword (64 bits)

53

Addressing modes

• Register addressing: (1)

• Pre-indexed addressing: (2), (3)

• Pre-indexed with write-back: (4)

• Post-index with write-back: (5)

54

Register addressing

• Ex)

• R0 = 0x01010101

• R1 = 0x00009000

55

Pre-indexed addressing

• Ex)

• R0 = 0x02020202

• R1 = 0x00009000

56

Pre-indexed with write-back

• Ex)

• R0 = 0x02020202

• R1 = 0x00009004

57

Post-index with write-back

• Ex)

• R0 = 0x01010101

• R1 = 0x00009004

58

Multiple transfers

• LDM / STM

59

Multiple transfers

• LDMIA

– Ex)

– Results

60

Multiple transfers

• LDMIA - start

61

Multiple transfers

• LDMIA - end

62

Multiple transfers

• LDMIB

– Ex)

– Results

63

Multiple transfers

• LDMIB - start

64

Multiple transfers

• LDMIB - end

65

Multiple transfers

• Matching

66

Multiple transfers

• LDM

– Syntax

– ! if present, specifies that the final address is written back into Rn

– ^ (in a mode other than User or System) means one of two

possible special actions

• data is transferred into the User mode registers instead of the

current mode registers (without PC)

• the normal multiple register transfer happens and the SPSR is copied

into the CPSR (with PC)

67

